A fast tracking algorithm for generalized LARS/LASSO

被引:20
作者
Keerthi, S. Sathiya
Shevade, Shirish
机构
[1] Yahoo Res, Burbank, CA 91504 USA
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2007年 / 18卷 / 06期
关键词
generalized Least Angle Regression (LARS); Least Absolute Shrinkage and Selection Operator (LASSO); sparse logistic regression;
D O I
10.1109/TNN.2007.900229
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter gives an efficient algorithm for tracking the solution curve of sparse logistic regression With respect to the L I regularization parameter. The algorithm is based on approximating the logistic regression loss by a piecewise quadratic function, using Rosset and Zhu's path tracking algorithm on the approximate problem, and then applying a correction to get to the true path. Application of the algorithm to text classification and sparse kernel logistic regression shows that the algorithm is efficient.
引用
收藏
页码:1826 / 1830
页数:5
相关论文
共 14 条
[1]  
BACH FR, 2005, NEURAL INFORM PROCES, V17
[2]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[3]  
Genkin Alexander, 2004, LARGE SCALE BAYESIAN
[4]  
KEERTHI SS, 2005, P 22 INT C MACH LEAR, P417
[5]  
Madigan D, 2004, ANN STAT, V32, P465
[6]   On the LASSO and its dual [J].
Osborne, MR ;
Presnell, B ;
Turlach, BA .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) :319-337
[7]  
RATSCH TG, 1998, BENCHMARK REPOSITORY
[8]  
ROSSET S, 2005, ADV NEURAL INFORM PR, V17
[9]  
ROSSET S, 2004, PIECEWISE LINEAR REG
[10]   The generalized LASSO [J].
Roth, V .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (01) :16-28