Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo

被引:103
作者
Bolt, DM [1 ]
Lall, VF [1 ]
机构
[1] Univ Wisconsin, Dept Educ Psychol, Madison, WI 53706 USA
关键词
Markov chain Monte Carlo; multidimensional two-parameter logistic model; multidimensional latent trait model; IRT estimation; model comparison; Bayes factors;
D O I
10.1177/0146621603258350
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Markov chain Monte Carlo (MCMC) estimation is investigated for multidimensional compensatory and noncompensatory item response models. Simulation analyses are used to evaluate parameter recovery for the multidimensional two-Parameter logistic model (M2PL) and the multidimensional latent trait model (MLTM) under varying conditions of sample size (1,000, 3,000), number of items (25, 50), and correlation between abilities (.0, .3, and .6). Results suggest that an MCMC procedure using a Metropolis-Hastings algorithm can recover the parameters of both models but is less successful for the MLTM as the correlation between abilities increases. In general, estimation is more accurate for the M2PL than the MLTM. A Bayes factor criterion for comparing the relative fit of the models to a common data set is investigated using simulated data. Using real data, the M2PL is found to be the superior model for a test of English usage.
引用
收藏
页码:395 / 414
页数:20
相关论文
共 36 条
[1]   Graphical representation of multidimensional item response theory analyses [J].
Ackerman, T .
APPLIED PSYCHOLOGICAL MEASUREMENT, 1996, 20 (04) :311-329
[2]   CREATING A TEST INFORMATION PROFILE FOR A 2-DIMENSIONAL LATENT SPACE [J].
ACKERMAN, TA .
APPLIED PSYCHOLOGICAL MEASUREMENT, 1994, 18 (03) :257-275
[4]   POSITIVITY PROPERTIES AND STABILITY OF SOLITARY-WAVE SOLUTIONS OF MODEL-EQUATIONS FOR LONG WAVES [J].
ALBERT, JP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (1-2) :1-22
[5]   An investigation of the item parameter recovery characteristics of a Gibbs sampling procedure [J].
Baker, FB .
APPLIED PSYCHOLOGICAL MEASUREMENT, 1998, 22 (02) :153-169
[6]   MCMC estimation and some model-fit analysis of multidimensional IRT models [J].
Béguin, AA ;
Glas, CAW .
PSYCHOMETRIKA, 2001, 66 (04) :541-561
[7]   A mixture item response model for multiple-choice data [J].
Bolt, DM ;
Cohen, AS ;
Wollack, JA .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2001, 26 (04) :381-409
[8]  
Embretson S. E., 2000, ITEM RESPONSE THEORY, Vxi, P371
[9]  
EMBRETSON SE, 1983, PSYCHOL BULL, V93, P179, DOI DOI 10.1037/0033-2909.93.1.179
[10]  
Fraser C., 1988, NOHARM 2 FORTRAN PRO