Whistler turbulence forward cascade: Three-dimensional particle-in-cell simulations

被引:44
作者
Chang, Ouliang [1 ]
Gary, S. Peter [2 ]
Wang, Joseph [1 ]
机构
[1] Univ So Calif, Dept Astronaut Engn, Los Angeles, CA 90089 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
SOLAR-WIND TURBULENCE; DEPENDENCE; WAVES;
D O I
10.1029/2011GL049827
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The first fully three-dimensional particle-in-cell (PIC) simulation of whistler turbulence in a magnetized, homogeneous, collisionless plasma has been carried out. An initial relatively isotropic spectrum of long-wavelength whistlers is imposed upon the system, with an initial electron beta = 0.10. As in previous two-dimensional simulations of whistler turbulence, the three-dimensional system exhibits a forward cascade to shorter wavelengths and broadband, turbulent spectra with a wave vector anisotropy in the sense of stronger fluctuation energy at k(perpendicular to) than at comparable k(parallel to) where the respective subscripts represent directions perpendicular and parallel to the background magnetic field B-o. However, the three-dimensional (3D) simulations display quantitative differences with comparable two-dimensional (2D) computations. In the 3D runs, turbulence develops a stronger anisotropic cascade more rapidly than in 2D runs. Furthermore, reduced magnetic fluctuation spectra in 3D runs are less steep functions of perpendicular wave numbers than those from 2D simulations. The much larger volume of perpendicular wave vector space in 3D appears to facilitate the transfer of fluctuation energy toward perpendicular directions. Citation: Chang, O., S. Peter Gary, and J. Wang (2011), Whistler turbulence forward cascade: Three-dimensional particle-in-cell simulations, Geophys. Res. Lett., 38, L22102, doi: 10.1029/2011GL049827.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Small-scale energy cascade of the solar wind turbulence [J].
Alexandrova, O. ;
Carbone, V. ;
Veltri, P. ;
Sorriso-Valvo, L. .
ASTROPHYSICAL JOURNAL, 2008, 674 (02) :1153-1157
[2]   Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales [J].
Alexandrova, O. ;
Saur, J. ;
Lacombe, C. ;
Mangeney, A. ;
Mitchell, J. ;
Schwartz, S. J. ;
Robert, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[3]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[4]   HELIOCENTRIC DISTANCE DEPENDENCE OF INTER-PLANETARY MAGNETIC-FIELD [J].
BEHANNON, KW .
REVIEWS OF GEOPHYSICS, 1978, 16 (01) :125-145
[5]   PROPERTIES OF WHISTLER MODE WAVES BETWEEN 0.3 AND 1.0 AU FROM HELIOS OBSERVATIONS [J].
BEINROTH, HJ ;
NEUBAUER, FM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA9) :7755-7760
[6]   Electron magnetohydrodynamic turbulence [J].
Biskamp, D ;
Schwarz, E ;
Zeiler, A ;
Celani, A ;
Drake, JF .
PHYSICS OF PLASMAS, 1999, 6 (03) :751-758
[7]   THE DISSIPATION OF SOLAR WIND TURBULENT FLUCTUATIONS AT ELECTRON SCALES [J].
Camporeale, Enrico ;
Burgess, David .
ASTROPHYSICAL JOURNAL, 2011, 730 (02)
[8]   Anisotropy of Solar Wind Turbulence between Ion and Electron Scales [J].
Chen, C. H. K. ;
Horbury, T. S. ;
Schekochihin, A. A. ;
Wicks, R. T. ;
Alexandrova, O. ;
Mitchell, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[9]   The anisotropy of electron magnetohydrodynamic turbulence [J].
Cho, J ;
Lazarian, A .
ASTROPHYSICAL JOURNAL, 2004, 615 (01) :L41-L44
[10]   SIMULATIONS OF ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE [J].
Cho, Jungyeon ;
Lazarian, A. .
ASTROPHYSICAL JOURNAL, 2009, 701 (01) :236-252