Epigenetic assembly of centromeric chromatin at ectopic α-satellite sites on human chromosomes

被引:51
作者
Nakano, M [1 ]
Okamoto, Y [1 ]
Ohzeki, J [1 ]
Masumoto, H [1 ]
机构
[1] Nagoya Univ, Grad Sch Sci, Div Biol Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
centromere; alpha-satellite; mammalian artificial chromosome; heterochromatin; histone acetylation;
D O I
10.1242/jcs.00697
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To investigate the mechanism of chromatin assembly at human centromeres, we isolated cultured human cell lines in which a transfected alpha-satellite (alphoid) YAC was integrated ectopically into the terminal region of host chromosome 16, where it was stably maintained. Centromere activity of the alphoid YAC was suppressed at ectopic locations on the host chromosome, as indicated by the absent or reduced assembly of CENP-A and -C. However, long-term culture in selective medium, or short-term treatment with the histone deacetylase inhibitor Trichostatin A (TSA), promoted the re-assembly of CENP-A, -B and -C at the YAC site and the release of minichromosomes containing the YAC integration site. Chromatin immunoprecipitation analyses of the re-formed minichromosome and the alphoid YAC-based stable human artificial chromosome both indicated that CENP-A and CENP-B assembled only on the inserted alphoid array but not on the YAC arms. On the YAC arms at the alphoid YAC integration sites, TSA treatment increased both the acetylation level of histone H3 and the transcriptional level of a marker gene. An increase in the level of transcription was also observed after long-term culture in selective medium. These activities, which are associated with changes in chromatin structure, might reverse the suppressed chromatin state of the YAC at ectopic loci, and thus might be involved in the epigenetic change of silent centromeres on ectopic alphoid loci.
引用
收藏
页码:4021 / 4034
页数:14
相关论文
共 68 条
[1]   Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels its nucleosome structure [J].
Bartsch, J ;
Truss, M ;
Bode, J ;
Beato, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (20) :10741-10746
[2]   Requirement of heterochromatin for cohesion at centromeres [J].
Bernard, P ;
Maure, JF ;
Partridge, JF ;
Genier, S ;
Javerzat, JP ;
Allshire, RC .
SCIENCE, 2001, 294 (5551) :2539-2542
[3]   Conserved organization of centromeric chromatin in flies and humans [J].
Blower, MD ;
Sullivan, BA ;
Karpen, GH .
DEVELOPMENTAL CELL, 2002, 2 (03) :319-330
[4]   The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions [J].
Blower, MD ;
Karpen, GH .
NATURE CELL BIOLOGY, 2001, 3 (08) :730-739
[5]   ISOLATION OF A SACCHAROMYCES-CEREVISIAE CENTROMERE DNA-BINDING PROTEIN, ITS HUMAN HOMOLOG, AND ITS POSSIBLE ROLE AS A TRANSCRIPTION FACTOR [J].
BRAM, RJ ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :403-409
[6]   FINE STRUCTURE OF KINETOCHORE OF A MAMMALIAN CELL IN VITRO [J].
BRINKLEY, BR ;
STUBBLEFIELD, E .
CHROMOSOMA, 1966, 19 (01) :28-+
[7]   CLONING OF LARGE SEGMENTS OF EXOGENOUS DNA INTO YEAST BY MEANS OF ARTIFICIAL CHROMOSOME VECTORS [J].
BURKE, DT ;
CARLE, GF ;
OLSON, MV .
SCIENCE, 1987, 236 (4803) :806-812
[8]   SODIUM BUTYRATE INHIBITS HISTONE DEACETYLATION IN CULTURED-CELLS [J].
CANDIDO, EPM ;
REEVES, R ;
DAVIE, JR .
CELL, 1978, 14 (01) :105-113
[9]   A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast [J].
Chen, ES ;
Saitoh, S ;
Yanagida, M ;
Takahashi, K .
MOLECULAR CELL, 2003, 11 (01) :175-187
[10]   A SURVEY OF THE GENOMIC DISTRIBUTION OF ALPHA-SATELLITE DNA ON ALL THE HUMAN-CHROMOSOMES, AND DERIVATION OF A NEW CONSENSUS SEQUENCE [J].
CHOO, KH ;
VISSEL, B ;
NAGY, A ;
EARLE, E ;
KALITSIS, P .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1179-1182