Substrate specificity and excision kinetics of Escherichia coli endonuclease VIII (Nei) for modified bases in DNA damaged by free radicals

被引:42
作者
Dizdaroglu, M
Burgess, SM
Jaruga, P
Hazra, TK
Rodriguez, H
Lloyd, RS
机构
[1] Natl Inst Stand & Technol, Chem Sci & Technol Lab, Gaithersburg, MD 20899 USA
[2] Univ Texas, Med Branch, Sealy Ctr Environm Hlth & Med, Galveston, TX 77555 USA
[3] Ludwik Rydygier Med Univ, Bydgoszcz, Poland
[4] Univ Texas, Med Branch, Dept Human Biol Chem & Genet, Galveston, TX 77555 USA
[5] Univ Texas, Med Branch, Sealy Ctr Mol Sci, Galveston, TX 77555 USA
关键词
D O I
10.1021/bi015552o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endonuclease VIII (Nei) is one of three enzymes in Escherichia coli that are involved in base-excision repair of oxidative damage to DNA. We investigated the substrate specificity and excision kinetics of this DNA glycosylase for bases in DNA that have been damaged by free radicals. Two different DNA substrates were prepared by gamma -irradiation of DNA solutions under N2O or air, such that they contained a multiplicity of modified bases. Although previous studies on the substrate specificity of Nei had demonstrated activity on several pyrimidine derivatives, this present study demonstrates excision of additional pyrimidine derivatives and a purine-derived lesion, 4,6-diamino-5-formamidopyrimidine, from DNA containing multiple modified bases. Excision was dependent on enzyme concentration, incubation time, and substrate concentration, and followed Michaelis-Menten kinetics. The kinetic parameters also depended on the identity of the individual modified base being removed. Substrates and excision kinetics of Nei and a naturally arising mutant form involving Leu-90 --> Ser (L90S-Nei) were compared to those of Escherichia coli endonuclease III (Nth), which had previously been determined under experimental conditions similar to those in this study. This comparison showed that Nei and Nth significantly differ from each other in terms of excision rates, although they have common substrates. The present work extends the substrate specificity of Nei and shows the effect of a single mutation in the nei gene on the specificity of Nei.
引用
收藏
页码:12150 / 12156
页数:7
相关论文
共 32 条
[1]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[2]   Oxidative decay of DNA [J].
Beckman, KB ;
Ames, BN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :19633-19636
[3]   A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G→T transversions [J].
Blaisdell, JO ;
Hatahet, Z ;
Wallace, SS .
JOURNAL OF BACTERIOLOGY, 1999, 181 (20) :6396-6402
[4]   SUBSTRATE-SPECIFICITY OF THE ESCHERICHIA-COLI FPG PROTEIN (FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE) - EXCISION OF PURINE LESIONS IN DNA PRODUCED BY IONIZING-RADIATION OR PHOTOSENSITIZATION [J].
BOITEUX, S ;
GAJEWSKI, E ;
LAVAL, J ;
DIZDAROGLU, M .
BIOCHEMISTRY, 1992, 31 (01) :106-110
[5]   REACTIONS OF OXYL RADICALS WITH DNA [J].
BREEN, AP ;
MURPHY, JA .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (06) :1033-1077
[6]   ENDONUCLEASE-III (NTH) MUTANTS OF ESCHERICHIA-COLI [J].
CUNNINGHAM, RP ;
WEISS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (02) :474-478
[7]   Novel substrates of Escherichia coli Nth protein and its kinetics for excision of modified bases from DNA damaged by free radicals [J].
Dizdaroglu, M ;
Bauche, C ;
Rodriguez, H ;
Laval, J .
BIOCHEMISTRY, 2000, 39 (18) :5586-5592
[8]  
DIZDAROGLU M, 1994, METHOD ENZYMOL, V234, P3
[9]   OXIDATIVE DAMAGE TO DNA IN MAMMALIAN CHROMATIN [J].
DIZDAROGLU, M .
MUTATION RESEARCH, 1992, 275 (3-6) :331-342
[10]   SUBSTRATE-SPECIFICITY OF THE ESCHERICHIA-COLI ENDONUCLEASE-III - EXCISION OF THYMINE-DERIVED AND CYTOSINE-DERIVED LESIONS IN DNA PRODUCED BY RADIATION-GENERATED FREE-RADICALS [J].
DIZDAROGLU, M ;
LAVAL, J ;
BOITEUX, S .
BIOCHEMISTRY, 1993, 32 (45) :12105-12111