Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA

被引:25
作者
Shimazaki, T
Asai, Y
Yarnashita, K
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
[2] AIST, Tsukuba, Ibaraki 3058568, Japan
关键词
D O I
10.1021/jp047456d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems. but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies. the activation energies. the electronic coupling matrix elements. and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions. a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide ran-e of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge. the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412. 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000. 406, 51].
引用
收藏
页码:1295 / 1303
页数:9
相关论文
共 55 条
[1]  
ANAKA S, 2003, PHYS REV E, V68
[2]   Theory of electric conductance of DNA molecule [J].
Asai, Y .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (19) :4647-4652
[3]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   On the long-range charge transfer in DNA [J].
Berlin, YA ;
Burin, AL ;
Ratner, MA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (03) :443-445
[6]   Elementary steps for charge transport in DNA: thermal activation vs. tunneling [J].
Berlin, YA ;
Burin, AL ;
Ratner, MA .
CHEMICAL PHYSICS, 2002, 275 (1-3) :61-74
[7]   Charge hopping in DNA [J].
Berlin, YA ;
Burin, AL ;
Ratner, MA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (02) :260-268
[8]   Electron transfer - From isolated molecules to biomolecules [J].
Bixon, M ;
Jortner, J .
ELECTRON TRANSFER-FROM ISOLATED MOLECULES TO BIOMOLECULES, PT 1, 1999, 106 :35-202
[9]   Long-range and very long-range charge transport in DNA [J].
Bixon, M ;
Jortner, J .
CHEMICAL PHYSICS, 2002, 281 (2-3) :393-408
[10]   Charge transport in DNA via thermally induced hopping [J].
Bixon, M ;
Jortner, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (50) :12556-12567