Diffusive-ballistic crossover in 1D quantum walks -: art. no. 230602

被引:33
作者
Wójcik, DK [1 ]
Dorfman, JR
机构
[1] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[2] Polish Acad Sci, Cent Fiz Teoretycznej, PL-02668 Warsaw, Poland
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
关键词
D O I
10.1103/PhysRevLett.90.230602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that particle transport, as characterized by the equilibrium mean square displacement, in a uniform, quantum multibaker map, is generically ballistic in the long time limit, for any fixed value of Planck's constant. However, for fixed times, the semiclassical limit leads to diffusion. Random matrix theory provides explicit analytical predictions for the mean square displacement of a particle in the system. These results exhibit a crossover from diffusive to ballistic motion, with crossover time on the order of the inverse of Planck's constant. We expect that, for a large class of 1D quantum random walks similar to the quantum multibaker, a sufficient condition for diffusion in the semiclassical limit is classically chaotic dynamics in each cell. The systems described generalize known quantum random walks and may have applications for quantum computation.
引用
收藏
页数:4
相关论文
共 20 条
[1]  
Andris Ambainis, 2001, P 33 ANN ACM S THEOR, P37, DOI DOI 10.1145/380752.380757
[2]  
[Anonymous], QUANTUM SIGNATURES C
[3]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[4]   Realizing the quantum baker's map on a NMR quantum computer [J].
Brun, TA ;
Schack, R .
PHYSICAL REVIEW A, 1999, 59 (04) :2649-2658
[5]   Quantization of a class of piecewise affine transformations on the torus [J].
DeBievre, S ;
Esposti, MD ;
Giachetti, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (01) :73-94
[6]  
Dorfman J. R., 1999, INTRO CHAOS NONEQUIL
[7]   Quantum walks in optical lattices -: art. no. 052319 [J].
Dür, W ;
Raussendorf, R ;
Kendon, VM ;
Briegel, HJ .
PHYSICAL REVIEW A, 2002, 66 (05) :8
[8]   DIFFUSION, EFFUSION, AND CHAOTIC SCATTERING - AN EXACTLY SOLVABLE LIOUVILLIAN DYNAMICS [J].
GASPARD, P .
JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (5-6) :673-747
[9]  
Gaspard P., 1998, CHAOS SCATTERING STA
[10]   From the quantum random walk to classical mesoscopic diffusion in crystalline solids [J].
Godoy, S ;
GarciaColin, LS .
PHYSICAL REVIEW E, 1996, 53 (06) :5779-5785