Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance

被引:137
作者
Wang, Maoyan
Gu, Dan
Liu, Tingsong
Wang, Zhaoqiang
Guo, Xiying
Hou, Wei
Bai, Yunfeng
Chen, Xiaoping
Wang, Guoying [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Beijing 100081, Peoples R China
[2] China Agr Univ, Natl Ctr Plant Gene Res, Beijing 100094, Peoples R China
[3] China Agr Univ, State Key Lab Agrobiotechnol, Beijing 100094, Peoples R China
[4] Inner Mongolia Agr Univ, Coll Biotechnol, Hohhot, Peoples R China
关键词
CBL gene; maize; expression; salt tolerance;
D O I
10.1007/s11103-007-9238-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The calcineurin B-like proteins (CBLs) represent a unique family of calcium sensors in plants. Although extensive studies and remarkable progress have been made in Arabidopsis (Arabidopsis thaliana) CBLs, their functions in other plant species are still quite limited. Here, we report the cloning and functional characterization of ZmCBL4, a novel CBL gene from maize (Zea mays). ZmCBL4 encodes a putative homolog of the Arabidopsis CBL4/SOS3 protein, with novel properties. ZmCBL4 has one copy in maize genome and harbors seven introns in its coding region. ZmCBL4 expressed differentially in various organs of the maize plants at a low level under normal condition, and its expression was regulated by NaCl, LiCl, ABA and PEG treatments. Expression of 35S::ZmCBL4 not only complemented the salt hypersensitivity in Arabidopsis sos3 mutant, but also enhanced the salt tolerance in Arabidopsis wild type at the germination and seedling stages. Moreover, the LiCl tolerance in all of the ZmCBL4-expressing lines increased more significantly as compared with the NaCl tolerance, and in consistent with this, it was found that the expression of Arabidopsis AtNHX8, a putative plasma membrane Li(+)/H(+) antiporter gene identified recently, was induced in these transgenic lines under LiCl stress. The ZmCBL4-expressing Arabidopsis lines accumulated less Na(+) and Li(+) as compared with the control plants. This study has identified a putative maize CBL gene which functions in the salt stress-elicited calcium signaling and thus in the tolerance to salinity.
引用
收藏
页码:733 / 746
页数:14
相关论文
共 50 条
[1]   The calcium sensor CBL1 integrates plant responses to abiotic stresses [J].
Albrecht, V ;
Weinl, S ;
Blazevic, D ;
D'Angelo, C ;
Batistic, O ;
Kolukisaoglu, Ü ;
Bock, R ;
Schulz, B ;
Harter, K ;
Kudla, J .
PLANT JOURNAL, 2003, 36 (04) :457-470
[2]   The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases [J].
Albrecht, V ;
Ritz, O ;
Linder, S ;
Harter, K ;
Kudla, J .
EMBO JOURNAL, 2001, 20 (05) :1051-1063
[3]   AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter [J].
An, Rui ;
Chen, Qi-Jun ;
Chai, Mao-Feng ;
Lu, Ping-Li ;
Su, Zhao ;
Qin, Zhi-Xiang ;
Chen, Jia ;
Wang, Xue-Chen .
PLANT JOURNAL, 2007, 49 (04) :718-728
[4]   Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter [J].
Apse, MP ;
Sottosanto, JB ;
Blumwald, E .
PLANT JOURNAL, 2003, 36 (02) :229-239
[5]   Evolutionary origins of eukaryotic sodium/proton exchangers [J].
Brett, CL ;
Donowitz, M ;
Rao, R .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 288 (02) :C223-C239
[6]   CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis [J].
Cheong, YH ;
Kim, KN ;
Pandey, GK ;
Gupta, R ;
Grant, JJ ;
Luan, S .
PLANT CELL, 2003, 15 (08) :1833-1845
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana [J].
Guo, Y ;
Qiu, QS ;
Quintero, FJ ;
Pardo, JM ;
Ohta, M ;
Zhang, CQ ;
Schumaker, KS ;
Zhu, JK .
PLANT CELL, 2004, 16 (02) :435-449
[9]  
Guo Y, 2001, PLANT CELL, V13, P1383, DOI 10.1105/tpc.13.6.1383
[10]   The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 [J].
Halfter, U ;
Ishitani, M ;
Zhu, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3735-3740