Zinc oxide nanostructures: Morphology derivation and evolution

被引:206
作者
Ye, CH [1 ]
Fang, XS
Hao, YF
Teng, XM
Zhang, LD
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Hefei 230031, Peoples R China
关键词
D O I
10.1021/jp0509358
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zinc oxide nanostructures of various types, including nanobelts, nanoplatelets, nanowires, and nanorods, have been synthesized via well-developed routes by many research groups. However, so far, the underlying mechanism for the morphology derivation and evolution of the nanostructures has not been elucidated in depth. In this article, we report the systematic investigation of the morphology evolution characteristics of ZnO nanostructures from dense rods to dense nanoplatelets, nanoplatelet flowers, dense nanobelt flowers, and nanowire flowers in an evaporation-physical transport -condensation approach. Through the use of crystal growth theory, the determining factors for the formation of different nanostructural morphologies were found to be gas-phase supersaturation and the surface energy of the growing surface planes. Other experimental parameters such as the temperature at the source and the substrate, the temperature difference and the distance between the source and the substrate, the heating rate of the furnace, the gas flow rate, the ceramic tube diameter, and the starting material are all correlated with supersaturation and impose an effect on the morphology evolution. This finding may have an important impact on the qualitative understanding of the morphology evolution of nanostructures and the achieving of desired nanostructures controllably.
引用
收藏
页码:19758 / 19765
页数:8
相关论文
共 66 条
[1]   Growth mechanism and characterization of zinc oxide hexagonal columns [J].
Baxter, JB ;
Wu, F ;
Aydil, ES .
APPLIED PHYSICS LETTERS, 2003, 83 (18) :3797-3799
[2]   GROWTH OF CRYSTAL WHISKERS [J].
BLAKELY, JM ;
JACKSON, KA .
JOURNAL OF CHEMICAL PHYSICS, 1962, 37 (02) :428-&
[3]   THE GROWTH OF WHISKERS BY THE REDUCTION OF METAL SALTS [J].
BRENNER, SS .
ACTA METALLURGICA, 1956, 4 (01) :62-74
[4]   ROLE OF DISLOCATIONS IN CRYSTAL GROWTH [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
NATURE, 1949, 163 (4141) :398-399
[5]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[6]   Super-hydrophobic tin oxide nanoflowers [J].
Chen, AC ;
Peng, XS ;
Koczkur, K ;
Miller, B .
CHEMICAL COMMUNICATIONS, 2004, (17) :1964-1965
[7]   Catalytic growth and characterization of gallium nitride nanowires [J].
Chen, CC ;
Yeh, CC ;
Chen, CH ;
Yu, MY ;
Liu, HL ;
Wu, JJ ;
Chen, KH ;
Chen, LC ;
Peng, JY ;
Chen, YF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (12) :2791-2798
[8]   Structural and optical properties of uniform ZnO nanosheets [J].
Chen, SJ ;
Liu, YC ;
Shao, CL ;
Mu, R ;
Lu, YM ;
Zhang, JY ;
Shen, DZ ;
Fan, XW .
ADVANCED MATERIALS, 2005, 17 (05) :586-+
[9]   Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser [J].
Choy, JH ;
Jang, ES ;
Won, JH ;
Chung, JH ;
Jang, DJ ;
Kim, YW .
ADVANCED MATERIALS, 2003, 15 (22) :1911-+
[10]   Melting of gold clusters: Icosahedral precursors [J].
Cleveland, CL ;
Luedtke, WD ;
Landman, U .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2036-2039