Black strings in (4+1)-dimensional Einstein-Yang-Mills theory

被引:11
作者
Brihaye, Y [1 ]
Hartmann, B
Radu, E
机构
[1] Univ Mons, Fac Sci, B-7000 Mons, Belgium
[2] Int Univ Bremen, Sch Sci & Engn, D-28725 Bremen, Germany
[3] Natl Univ Ireland, Dept Math Phys, Maynooth, Kildare, Ireland
来源
PHYSICAL REVIEW D | 2005年 / 72卷 / 10期
关键词
D O I
10.1103/PhysRevD.72.104008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study two classes of static uniform black string solutions in a (4+1)-dimensional SU(2) Einstein-Yang-Mills model. These configurations possess a regular event horizon and correspond in a four-dimensional picture to axially symmetric black hole solutions in an Einstein-Yang-Mills-Higgs-U(1)-dilaton theory. In this approach, one set of solutions possesses a nonzero magnetic charge, while the other solutions represent black holes located in between a monopole-antimonopole pair. A detailed analysis of the solutions' properties is presented, the domain of existence of the black strings being determined. New four-dimensional solutions are found by boosting the five-dimensional configurations. We also present an argument for the nonexistence of finite mass hyperspherically symmetric black holes in SU(2) Einstein-Yang-Mills theory.
引用
收藏
页数:19
相关论文
共 40 条
[1]  
ASCHER U, 1979, MATH COMPUT, V33, P659, DOI 10.1090/S0025-5718-1979-0521281-7
[2]  
ASCHER U, 1981, ACM T MATH SOFTWARE, V7, P209, DOI 10.1145/355945.355950
[3]   SYMMETRIES IN GAUGE THEORIES [J].
BERGMANN, PG ;
FLAHERTY, EJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (01) :212-214
[4]   NO-HAIR THEOREM FOR SPHERICAL MONOPOLES AND DYONS IN SU(2) EINSTEIN YANG-MILLS THEORY [J].
BIZON, P ;
POPP, OT .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (01) :193-205
[5]   Deformed vortices in (4+1)-dimensional Einstein-Yang-Mills theory [J].
Brihaye, Y ;
Hartmann, B ;
Radu, E .
PHYSICAL REVIEW D, 2005, 71 (08) :1-8
[6]   Gravitating Yang-Mills dyon vortices in 4+1 spacetime dimensions [J].
Brihaye, Y ;
Radu, E .
PHYSICS LETTERS B, 2005, 605 (1-2) :190-202
[7]   A rotating black ring solution in five dimensions [J].
Emparan, R ;
Reall, HS .
PHYSICAL REVIEW LETTERS, 2002, 88 (10) :4
[8]   NONEXISTENCE OF REGULAR MONOPOLES AND DYONS IN THE SU(2) EINSTEIN-YANG-MILLS THEORY [J].
ERSHOV, AA ;
GALTSOV, DV .
PHYSICS LETTERS A, 1990, 150 (3-4) :159-162
[9]   SPACE-TIME SYMMETRIES IN GAUGE-THEORIES [J].
FORGACS, P ;
MANTON, NS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 72 (01) :15-35
[10]   CORRECTION [J].
GARFINKLE, D .
PHYSICAL REVIEW D, 1992, 45 (10) :3888-3888