Cannabinoids activate several members of the mitogen-activated protein kinase superfamily including p44 and p42 extracellular signal-regulated kinase (ERK). We used N1E-115 neuroblastoma cells and the cannabinoid receptor agonist WIN 55,212-2 (WIN) to examine the signal transduction pathways leading to the activation of ERK. ERK phosphorylation ( activation) was measured by Western blot. The EC50 for stimulation of ERK phosphorylation was 10 nM, and this effect was blocked by pertussis toxin and the CB1 ( cannabinoid) receptor antagonist SR141716A. The MEK inhibitors PD 98059 and U0126 blocked ERK phosphorylation, as did the adenylate cyclase activator forskolin. The phosphatidylinositol (PI) 3-kinase inhibitor LY 294002 and the Src kinase inhibitor PP2 partially occluded the response but also decreased basal levels of phospho-ERK. The PI 3-kinase and Src pathways are known to promote cell survival in many systems; therefore, MTT (1-(4,5-dimethylthiazol-2-yl)- 3,5-diphenylformazan) conversion was used to examine the effects of these inhibitors on cellular viability. LY 294002 decreased the number of viable cells after 18 h of treatment; therefore, the inhibition of ERK by this inhibitor is probably because of cytotoxicity. Forskolin blocked ERK phosphorylation with an EC50 of < 3 mu M, and the protein kinase A (PKA) inhibitor H-89 enhanced ERK phosphorylation. c-Raf phosphorylation at an inhibitory PKA-regulated site (Ser(259)) was also reduced by WIN. This is probably due to constitutive phosphatase activity because WIN did not directly stimulate PP1 or PP2A activity when measured using 6,8-difluoro-4-methylumbelliferyl phosphate as a fluorogenic substrate. These data implicate the inhibition of PKA as the predominant pathway for ERK activation by CB1 receptors in N1E-115 cells. PI 3-kinase and Src appear to contribute to ERK activation by maintaining activation of kinases, which prime the pathway and maintain cellular viability.