The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa

被引:103
作者
Whitchurch, CB [1 ]
Alm, RA [1 ]
Mattick, JS [1 ]
机构
[1] UNIV QUEENSLAND,CTR MOL & CELLULAR BIOL,BRISBANE,QLD 4072,AUSTRALIA
关键词
twitching motility; fimbriae; pili; cystic fibrosis; pathogenesis;
D O I
10.1073/pnas.93.18.9839
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mucoid strains of Pseudomonas aeruginosa isolated from the lungs of cystic fibrosis patients produce large amounts of the exopolysaccharide alginate. AlgR has long been considered a key regulator of alginate production, but its cognate sensor has not been identified. Here we show that AlgR is required for twitching motility, which is a form of bacterial surface translocation mediated by type 4 fimbriae. Adjacent to algR we have identified a sensor gene (fimS), which is also required for twitching motility. However, FimS does not appear to be required for alginate production in mucoid strains. FimS and AlgR are representative of a new subclass of two-component transmitter-receiver regulatory systems. The alternative sigma factor AlgU also affects both alginate production and twitching motility. Therefore, these two virulence determinants appear to be closely associated and coordinately regulated.
引用
收藏
页码:9839 / 9843
页数:5
相关论文
共 37 条
[1]   Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa [J].
Alm, RA ;
Bodero, AJ ;
Free, PD ;
Mattick, JS .
JOURNAL OF BACTERIOLOGY, 1996, 178 (01) :46-53
[2]   IDENTIFICATION OF A GENE, PILV, REQUIRED FOR TYPE-4 FIMBRIAL BIOGENESIS IN PSEUDOMONAS-AERUGINOSA, WHOSE PRODUCT POSSESSES A PRE-PILIN-LIKE LEADER SEQUENCE [J].
ALM, RA ;
MATTICK, JS .
MOLECULAR MICROBIOLOGY, 1995, 16 (03) :485-496
[3]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[4]   FUNCTION OF PSEUDOMONAS-AERUGINOSA PAO POLAR PILI - TWITCHING MOTILITY [J].
BRADLEY, DE .
CANADIAN JOURNAL OF MICROBIOLOGY, 1980, 26 (02) :146-154
[5]   Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus [J].
Brunskill, EW ;
Bayles, KW .
JOURNAL OF BACTERIOLOGY, 1996, 178 (03) :611-618
[6]   CLONING OF GENES-CONTROLLING ALGINATE BIOSYNTHESIS FROM A MUCOID CYSTIC-FIBROSIS ISOLATE OF PSEUDOMONAS-AERUGINOSA [J].
DARZINS, A ;
CHAKRABARTY, AM .
JOURNAL OF BACTERIOLOGY, 1984, 159 (01) :9-18
[7]   INVITRO PHOSPHORYLATION OF ALGR, A REGULATOR OF MUCOIDY IN PSEUDOMONAS-AERUGINOSA, BY A HISTIDINE PROTEIN-KINASE AND EFFECTS OF SMALL PHOSPHODONOR MOLECULES [J].
DERETIC, V ;
LEVEAU, JHJ ;
MOHR, CD ;
HIBLER, NS .
MOLECULAR MICROBIOLOGY, 1992, 6 (19) :2761-2767
[8]   CONVERSION OF PSEUDOMONAS-AERUGINOSA TO MUCOIDY IN CYSTIC-FIBROSIS - ENVIRONMENTAL-STRESS AND REGULATION OF BACTERIAL VIRULENCE BY ALTERNATIVE SIGMA-FACTORS [J].
DERETIC, V ;
SCHURR, MJ ;
BOUCHER, JC ;
MARTIN, DW .
JOURNAL OF BACTERIOLOGY, 1994, 176 (10) :2773-2780
[9]   THE ALGR GENE, WHICH REGULATES MUCOIDY IN PSEUDOMONAS-AERUGINOSA, BELONGS TO A CLASS OF ENVIRONMENTALLY RESPONSIVE GENES [J].
DERETIC, V ;
DIKSHIT, R ;
KONYECSNI, WM ;
CHAKRABARTY, AM ;
MISRA, TK .
JOURNAL OF BACTERIOLOGY, 1989, 171 (03) :1278-1283
[10]   CONTROL OF MUCOIDY IN PSEUDOMONAS-AERUGINOSA - TRANSCRIPTIONAL REGULATION OF ALGR AND IDENTIFICATION OF THE 2ND REGULATORY GENE, ALGQ [J].
DERETIC, V ;
KONYECSNI, WM .
JOURNAL OF BACTERIOLOGY, 1989, 171 (07) :3680-3688