Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes

被引:1147
作者
Freunberger, Stefan A. [1 ]
Chen, Yuhui [1 ]
Peng, Zhangquan [1 ]
Griffin, John M. [1 ]
Hardwick, Laurence J. [1 ]
Barde, Fanny [2 ]
Novak, Petr [3 ]
Bruce, Peter G. [1 ]
机构
[1] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
[2] Toyota Motor Europe, Ctr Tech, B-1930 Zaventem, Belgium
[3] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
LI-AIR BATTERIES; SUPEROXIDE ION; LITHIUM/OXYGEN BATTERY; PROPYLENE CARBONATE; OXYGEN BATTERIES; APROTIC MEDIA; DISPROPORTIONATION; DECOMPOSITION; ELECTRODES; DISCHARGE;
D O I
10.1021/ja2021747
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The nonaqueous rechargeable lithium-O-2 battery containing an alkyl carbonate electrolyte discharges by formation of C3H6(OCO2Li)(2), Li2CO3, HCO2Li, CH3CO2Li, CO2, and H2O at the cathode, due to electrolyte decomposition. Charging involves oxidation of C3H6(OCO2Li)(2), Li2CO3, HCO2Li, CH3CO2Li accompanied by CO2 and H2O evolution. Mechanisms are proposed for the reactions on discharge and charge. The different pathways for discharge and charge are consistent with the widely observed voltage gap in Li-O-2 cells. Oxidation of C3H6(OCO2Li)(2) involves terminal carbonate groups leaving behind the OC3H6O moiety that reacts to form a thick gel on the Li anode. Li2CO3, HCO2Li, CH3CO2Li, and C3H6(OCO2Li)(2) accumulate in the cathode on cycling correlating with capacity fading and cell failure. The latter is compounded by continuous consumption of the electrolyte on each discharge.
引用
收藏
页码:8040 / 8047
页数:8
相关论文
共 53 条
  • [1] A polymer electrolyte-based rechargeable lithium/oxygen battery
    Abraham, KM
    Jiang, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 1 - 5
  • [2] Protected anodes for lithium-air batteries
    Aleshin, Gleb Yu.
    Semenenko, Dmitry A.
    Belova, Alina I.
    Zakharchenko, Tatyana K.
    Itkis, Daniil M.
    Goodilin, Eugene A.
    Tretyakov, Yurii D.
    [J]. SOLID STATE IONICS, 2011, 184 (01) : 62 - 64
  • [3] Some Possible Approaches for Improving the Energy Density of Li-Air Batteries
    Andrei, P.
    Zheng, J. P.
    Hendrickson, M.
    Plichta, E. J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) : A1287 - A1295
  • [4] Atkinson R, 1997, INT J CHEM KINET, V29, P99, DOI 10.1002/(SICI)1097-4601(1997)29:2<99::AID-KIN3>3.0.CO
  • [5] 2-F
  • [6] THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS
    AURBACH, D
    DAROUX, M
    FAGUY, P
    YEAGER, E
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01): : 225 - 244
  • [7] THE CORRELATION BETWEEN SURFACE-CHEMISTRY, SURFACE-MORPHOLOGY, AND CYCLING EFFICIENCY OF LITHIUM ELECTRODES IN A FEW POLAR APROTIC SYSTEMS
    AURBACH, D
    GOFER, Y
    LANGZAM, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (11) : 3198 - 3205
  • [8] IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS
    AURBACH, D
    DAROUX, ML
    FAGUY, PW
    YEAGER, E
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) : 1611 - 1620
  • [9] High-Capacity Lithium-Air Cathodes
    Beattie, S. D.
    Manolescu, D. M.
    Blair, S. L.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) : A44 - A47
  • [10] CHALCOGENOLATES .61. STUDIES ON HEMIESTERS OF CARBONIC-ACID .1. PREPARATION AND PROPERTIES OF MONOMETHYL AND MONOETHYL CARBONATES
    BEHRENDT, W
    GATTOW, G
    DRAGER, M
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1973, 397 (03): : 237 - 246