Rank-one LMIs and Lyapunov's inequality

被引:28
作者
Henrion, D [1 ]
Meinsma, G
机构
[1] Lab Analyse & Architecture Syst, CNRS, F-31077 Toulouse 4, France
[2] Acad Sci Czech Republ, Inst Informat Theory & Automat, CR-18208 Prague, Czech Republic
[3] Univ Twente, Fac Appl Math, NL-7500 AE Enschede, Netherlands
关键词
linear matrix inequalities (LMIs); linear systems; optimization;
D O I
10.1109/9.940935
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix in some region of the complex plane. The proof makes use of standard facts from quadratic and semidefinite programming. Links are established between the Lyapunov matrix, rank-one linear matrix inequalities (LMIs), and the Lagrange multiplier arising in duality theory.
引用
收藏
页码:1285 / 1288
页数:4
相关论文
共 11 条
[1]  
Barnett S., 1983, POLYNOMIALS LINEAR C
[2]  
Boyd S., 1994, SIAM STUDIES APPL MA
[3]   Generalized S-procedure and finite frequency KYP lemma [J].
Iwasaki, T ;
Meinsma, G ;
Fu, MY .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2000, 6 (2-3) :305-320
[4]  
KAILATH T., 1979, Linear systems
[5]   A dual formulation of mixed mu and on the losslessness of (D,G) scaling [J].
Meinsma, G ;
Shrivastava, Y ;
Fu, MY .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (07) :1032-1036
[6]   THE COMPLEX STRUCTURED SINGULAR VALUE [J].
PACKARD, A ;
DOYLE, J .
AUTOMATICA, 1993, 29 (01) :71-109
[7]   On the Kalman-Yakubovich-Popov lemma [J].
Rantzer, A .
SYSTEMS & CONTROL LETTERS, 1996, 28 (01) :7-10
[8]   Semidefinite programming [J].
Vandenberghe, L ;
Boyd, S .
SIAM REVIEW, 1996, 38 (01) :49-95
[9]  
Vandenberghe L., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P989, DOI 10.1109/CDC.1999.832923
[10]  
Yakubovich V. A., 1977, Vestnick Leningrad Univ. Math., V4, P73