Hotspot-Centric De Novo Design of Protein Binders

被引:38
作者
Fleishman, Sarel J. [1 ]
Corn, Jacob E. [1 ]
Strauch, Eva-Maria [1 ]
Whitehead, Timothy A. [1 ]
Karanicolas, John [1 ]
Baker, David [1 ,2 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
protein interactions; computational design; negative design; antibody engineering; conformational plasticity; HOT-SPOTS; COMPUTATIONAL DESIGN; BINDING-ENERGY; ANTIBODY; RECOGNITION; SPECIFICITY; RESIDUES; DOCKING; COMPLEX; REGION;
D O I
10.1016/j.jmb.2011.09.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein protein interactions play critical roles in biology, and computational design of interactions could be useful in a range of applications. We describe in detail a general approach to de novo design of protein interactions based on computed, energetically optimized interaction hotspots, which was recently used to produce high-affinity binders of influenza hemagglutinin. We present several alternative approaches to identify and build the key hotspot interactions within both core secondary structural elements and variable loop regions and evaluate the method's performance in natural-interface recapitulation. We show that the method generates binding surfaces that are more conformationally restricted than previous design methods, reducing opportunities for off-target interactions. (C) 2011 Published by Elsevier Ltd.
引用
收藏
页码:1047 / 1062
页数:16
相关论文
共 61 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   Computational Mapping of Anchoring Spots on Protein Surfaces [J].
Ben-Shimon, Avraham ;
Eisenstein, Miriam .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 402 (01) :259-277
[3]   High-affinity binders selected from designed ankyrin repeat protein libraries [J].
Binz, HK ;
Amstutz, P ;
Kohl, A ;
Stumpp, MT ;
Briand, C ;
Forrer, P ;
Grütter, MG ;
Plückthun, A .
NATURE BIOTECHNOLOGY, 2004, 22 (05) :575-582
[4]   Engineering novel binding proteins from nonimmunoglobulin domains [J].
Binz, HK ;
Amstutz, P ;
Plückthun, A .
NATURE BIOTECHNOLOGY, 2005, 23 (10) :1257-1268
[5]   Engineered proteins as specific binding reagents [J].
Binz, HK ;
Plückthun, A .
CURRENT OPINION IN BIOTECHNOLOGY, 2005, 16 (04) :459-469
[6]   Designing repeat proteins:: Well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins [J].
Binz, HK ;
Stumpp, MT ;
Forrer, P ;
Amstutz, P ;
Plückthun, A .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 332 (02) :489-503
[7]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[8]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[9]   Minimizing a binding domain from protein A [J].
Braisted, AC ;
Wells, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (12) :5688-5692
[10]   PROTEIN-PROTEIN RECOGNITION - CRYSTAL STRUCTURAL-ANALYSIS OF A BARNASE BARSTAR COMPLEX AT 2.0-ANGSTROM RESOLUTION [J].
BUCKLE, AM ;
SCHREIBER, G ;
FERSHT, AR .
BIOCHEMISTRY, 1994, 33 (30) :8878-8889