Nonperturbative 3D Lorentzian quantum gravity

被引:82
作者
Ambjorn, J
Jurkiewicz, J
Loll, R
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
D O I
10.1103/PhysRevD.64.044011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have recently introduced a discrete model of Lorentzian quantum gravity, given as a regularized nonperturbative state sum over simplicial Lorentzian space-times, each possessing a unique Wick rotation to the Euclidean signature. We investigate here the phase structure of the Wick-rotated path integral in three dimensions with the aid of computer simulations. After fine tuning the cosmological constant to its critical value, we find a whole range of the gravitational coupling constant k(0) for which the functional integral is dominated by nondegenerate three-dimensional space-times. We therefore have a situation in which a well-defined ground state of extended geometry is generated dynamically from a nonperturbative state sum of fluctuating geometries. Remarkably, its macroscopic scaling properties resemble those of a semiclassical spherical universe. Measurements so far indicate that k(0) defines an overall scale in this extended phase, without affecting the physics of the continuum limit. These findings provide further evidence that discrete Lorentzian gravity is a promising candidate for a nontrivial theory of quantum gravity.
引用
收藏
页数:17
相关论文
共 34 条
[1]   THE VACUUM IN 3-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
BOULATOV, DV ;
KRZYWICKI, A ;
VARSTED, S .
PHYSICS LETTERS B, 1992, 276 (04) :432-436
[2]  
Ambjorn J, 2000, PHYS REV D, V61, DOI 10.1103/PhysRevD.61.044010
[3]   New perspective on matter coupling in 2D quantum gravity [J].
Ambjorn, J ;
Anagnostopoulos, KN ;
Loll, R .
PHYSICAL REVIEW D, 1999, 60 (10)
[4]   Nonperturbative Lorentzian path integral for gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (05) :924-927
[5]   4-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J .
PHYSICS LETTERS B, 1992, 278 (1-2) :42-50
[6]   Euclidean and Lorentzian quantum gravity - Lessons from two dimensions [J].
Ambjorn, J ;
Loll, R ;
Nielsen, JL ;
Rolf, J .
CHAOS SOLITONS & FRACTALS, 1999, 10 (2-3) :177-195
[7]   Non-perturbative Lorentzian quantum gravity, causality and topology change [J].
Ambjorn, J ;
Loll, R .
NUCLEAR PHYSICS B, 1998, 536 (1-2) :407-434
[8]   ON THE FRACTAL STRUCTURE OF 2-DIMENSIONAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J ;
WATABIKI, Y .
NUCLEAR PHYSICS B, 1995, 454 (1-2) :313-342
[9]   SCALING IN QUANTUM-GRAVITY [J].
AMBJORN, J ;
WATABIKI, Y .
NUCLEAR PHYSICS B, 1995, 445 (01) :129-142
[10]  
Ambjorn J, 1996, FLUCTUATING GEOMETRIES IN STATISTICAL MECHANICS AND FIELD THEORY, P77