RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness

被引:109
作者
Terauchi, K
Montgomery, BL
Grossman, AR
Lagarias, JC
Kehoe, DM [1 ]
机构
[1] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[2] Univ Calif Davis, Sect Mol & Cellular Biol, Davis, CA 95616 USA
[3] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
关键词
D O I
10.1046/j.1365-2958.2003.03853.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The recent discovery of large numbers of phytochrome photoreceptor genes in both photosynthetic and non-photosynthetic prokaryotes has led to efforts to understand their physiological roles in environmental acclimation. One receptor in this class, RcaE, is involved in controlling complementary chromatic adaptation, a process that regulates the transcription of operons encoding light-harvesting proteins in cyanobacteria. Although all previously identified phytochrome responses are maximally sensitive to red and far red light, complementary chromatic adaptation is unique in that it is responsive to green and red light. Here, we present biochemical and genetic evidence demonstrating that RcaE is a photoreceptor and that it requires the cysteine at position 198 to ligate an open chain tetrapyrrole covalently in a manner analogous to chromophore attachment in plant phytochromes. Furthermore, although the wild-type rcaE gene can rescue red and green light photoresponses of an rcaE null mutant, a gene in which the codon for cysteine 198 is converted to an alanine codon rescues the red light but not the green light response. Thus, RcaE is a photoreceptor that is required for both green and red light responsiveness during complementary chromatic adaptation and is the first identified phytochrome class sensor that is involved in sensing and responding to green and red light rather than red and far red light.
引用
收藏
页码:567 / 577
页数:11
相关论文
共 71 条
[1]   SIMPLE CONDITIONS FOR GROWTH OF UNICELLULAR BLUE-GREEN ALGAE ON PLATES [J].
ALLEN, MM .
JOURNAL OF PHYCOLOGY, 1968, 4 (01) :1-&
[2]   The GAF domain: an evolutionary link between diverse phototransducing proteins [J].
Aravind, L ;
Ponting, CP .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (12) :458-459
[3]   COMPLETE CHEMICAL-STRUCTURE OF PHOTOACTIVE YELLOW PROTEIN - NOVEL THIOESTER-LINKED 4-HYDROXYCINNAMYL CHROMOPHORE AND PHOTOCYCLE CHEMIST [J].
BACA, M ;
BORGSTAHL, GEO ;
BOISSINOT, M ;
BURKE, PM ;
WILLIAMS, DR ;
SLATER, KA ;
GETZOFF, ED .
BIOCHEMISTRY, 1994, 33 (48) :14369-14377
[4]   Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins [J].
Ballario, P ;
Talora, C ;
Galli, D ;
Linden, H ;
Macino, G .
MOLECULAR MICROBIOLOGY, 1998, 29 (03) :719-729
[5]   VISUALIZATION OF BILIN-LINKED PEPTIDES AND PROTEINS IN POLYACRYLAMIDE GELS [J].
BERKELMAN, TR ;
LAGARIAS, JC .
ANALYTICAL BIOCHEMISTRY, 1986, 156 (01) :194-201
[6]   Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore [J].
Bhoo, SH ;
Davis, SJ ;
Walker, J ;
Karniol, B ;
Vierstra, RD .
NATURE, 2001, 414 (6865) :776-779
[7]   Phytochrome photochromism probed by site-directed mutations and chromophore esterification [J].
Bhoo, SH ;
Hirano, T ;
Jeong, HY ;
Lee, JG ;
Furuya, M ;
Song, PS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (48) :11717-11718
[8]   PHYCOBILIPROTEINS AND COMPLEMENTARY CHROMATIC ADAPTATION [J].
BOGORAD, L .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1975, 26 :369-401
[9]   THE PHOTOREGULATED EXPRESSION OF MULTIPLE PHYCOCYANIN SPECIES - A GENERAL MECHANISM FOR THE CONTROL OF PHYCOCYANIN SYNTHESIS IN CHROMATICALLY ADAPTING CYANOBACTERIA [J].
BRYANT, DA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1981, 119 (02) :425-429
[10]   Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix [J].
Campbell, D .
MICROBIOLOGY-SGM, 1996, 142 :1255-1263