Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity

被引:176
作者
Ameziane-El-Hassani, R
Morand, S
Boucher, JL
Frapart, YM
Apostolou, D
Agnandji, D
Gnidehou, S
Ohayon, R
Noël-Hudson, MS
Francon, J
Lalaoui, K
Virion, A
Dupuy, C
机构
[1] Univ Paris 11, INSERM, Unite 486, Fac Pharm, F-92296 Chatenay Malabry, France
[2] Univ Paris 05, CNRS, UMR 8601, F-75270 Paris, France
[3] Ctr Natl Energie Sci & Tech Nucl, Dept Sci Vivant, Rabat 10000, Morocco
关键词
D O I
10.1074/jbc.M500516200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Duox2 ( and probably Duox1) is a glycoflavoprotein involved in thyroid hormone biosynthesis, as the thyroid H2O2 generator functionally associated with Tpo (thyroperoxidase). So far, because of the impairment of maturation and of the targeting process, transfecting DUOX into nonthyroid cell lines has not led to the expression of a functional H2O2-generating system at the plasma membrane. For the first time, we investigated the H2O2-generating activity in the particulate fractions from DUOX2- and DUOX1-transfected HEK293 and Chinese hamster ovary cells. The particulate fractions of these cells stably or transiently transfected with human or porcine DUOX cDNA demonstrate a functional NADPH/Ca2+-dependent H2O2-generating activity. The immature Duox proteins had less activity than pig thyrocyte particulate fractions, and their activity depended on their primary structures. Human Duox2 seemed to be more active than human Duox1 but only half as active as its porcine counterpart. TPO co-transfection produced a slight increase in the enzymatic activity, whereas p22(phox), the 22-kDa subunit of the leukocyte NADPH oxidase, had no effect. In previous studies on the mechanism of H2O2 formation, it was shown that mature thyroid NADPH oxidase does not release O-2. but H2O2. Using a spin-trapping technique combined with electron paramagnetic resonance spectroscopy, we confirmed this result but also demonstrated that the partially glycosylated form of Duox2, located in the endoplasmic reticulum, generates superoxide in a calcium-dependent manner. These results suggest that post-translational modifications during the maturation process of Duox2 could be implicated in the mechanism of H2O2 formation by favoring intramolecular superoxide dismutation.
引用
收藏
页码:30046 / 30054
页数:9
相关论文
共 50 条
  • [1] Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase
    Ambasta, RK
    Kumar, P
    Griendling, KK
    Schmidt, HHHW
    Busse, R
    Brandes, RP
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) : 45935 - 45941
  • [2] Reactive oxygen generated by Nox1 triggers the angiogenic switch
    Arbiser, JL
    Petros, J
    Klafter, R
    Govindajaran, B
    McLaughlin, ER
    Brown, LF
    Cohen, C
    Moses, M
    Kilroy, S
    Arnold, RS
    Lambeth, JD
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) : 715 - 720
  • [3] NADPH oxidase: An update
    Babior, BM
    [J]. BLOOD, 1999, 93 (05) : 1464 - 1476
  • [4] Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5)
    Bánfi, B
    Tirone, F
    Durussel, I
    Knisz, J
    Moskwa, P
    Molnár, GZ
    Krause, KH
    Cox, JA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) : 18583 - 18591
  • [5] A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes
    Bánfi, B
    Molnár, G
    Maturana, A
    Steger, K
    Hegedûs, B
    Demaurex, N
    Krause, KH
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) : 37594 - 37601
  • [6] BJORKMAN U, 1984, ENDOCRINOLOGY, V115, P392
  • [7] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [8] NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells
    Brar, SS
    Corbin, Z
    Kennedy, TP
    Hemendinger, R
    Thornton, L
    Bommarius, B
    Arnold, RS
    Whorton, AR
    Sturrock, AB
    Huecksteadt, TP
    Quinn, MT
    Krenitsky, K
    Ardie, KG
    Lambeth, JD
    Hoidal, JR
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2003, 285 (02): : C353 - C369
  • [9] SUPEROXIDE AND HYDROGEN-PEROXIDE IN RELATION TO MAMMALIAN-CELL PROLIFERATION
    BURDON, RH
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (04) : 775 - 794
  • [10] Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues
    Caillou, B
    Dupuy, C
    Lacroix, L
    Nocera, M
    Talbot, M
    Ohayon, R
    Dème, D
    Bidart, JM
    Schlumberger, M
    Virion, A
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2001, 86 (07) : 3351 - 3358