A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanners

被引:54
作者
Tsekos, NV
Özcan, A
Christoforou, E
机构
[1] Washington Univ, Cardiovasc Imaging Lab, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Dept Biomed Engn, St Louis, MO 63110 USA
[3] Washington Univ, Biomed MR Lab, St Louis, MO 63110 USA
[4] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63110 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2005年 / 127卷 / 06期
关键词
D O I
10.1115/1.2049339
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The aim of this work is to develop a remotely controlled manipulator to perform minimally invasive diagnostic and therapeutic interventions in the abdominal and thoracic cavities, with real-time magnetic resonance imaging (MRI) guidance inside clinical cylindrical MR scanners. The manipulator is composed of a three degree of freedom Cartesian motion system, which resides outside the gantry of the scanner, and serves as the holder and global positioner of a three degree of freedom arm which extends inside the gantry of the scanner. At its distal end, the arm's end-effector can carry an interventional tool such as a biopsy needle, which can be advanced to a desired depth by means of a seventh degree of freedom. These seven degrees of freedom, provided by the entire assembly, offer extended manipulability to the device and a wide envelope of operation to the user who can select a trajectory suitable for the procedure. The device is constructed of nonmagnetic and nonconductive fiberglass, and carbon fiber composite materials, to minimize artifacts and distortion on the MR images as well as eliminate effects on its operation from the high magnetic field and the fast switching magnetic field gradients used in MR imaging. A user interface was developed,for man-in-the-loop control of the device using real-time MR images. The user interface fuses all sensor signals (MR and manipulator information) in a visualization, planning, and control command environment. Path planning is performed with graphical tools for setting the trajectory of insertion of the interventional tool using multislice and/or three dimensional MR images which are refreshed in real time, The device control is performed with all embedded computer which runs real-time control software. The manipulator compatibility with the MR environment and image-guided operation was tested on a 1.5 T MR scanner.
引用
收藏
页码:972 / 980
页数:9
相关论文
共 40 条
[1]  
Alexander E, 2001, NEUROIMAG CLIN N AM, V11, P659
[2]  
Aschoff AJ, 2000, J MAGN RESON IMAGING, V12, P584, DOI 10.1002/1522-2586(200010)12:4<584::AID-JMRI10>3.0.CO
[3]  
2-W
[4]   Interventional MR-guided neuroendoscopy: A new therapeutic option for children [J].
Balmer, B ;
Bernays, RL ;
Kollias, SS ;
Yonekawa, Y .
JOURNAL OF PEDIATRIC SURGERY, 2002, 37 (04) :668-672
[5]   MR monitoring of MR-guided radiofrequency thermal ablation of normal liver in an animal model [J].
Boaz, TL ;
Lewin, JS ;
Chung, YC ;
Duerk, JL ;
Clampitt, ME ;
Haaga, JR .
JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1998, 8 (01) :64-69
[6]  
Chinzei K, 2001, Med Sci Monit, V7, P153
[7]  
DEBATIN G, 1998, INTERVENTIONAL MAGNE
[8]   Magnetic resonance imaging-guided laser thermal ablation of renal tumours [J].
Dick, EA ;
Joarder, R ;
De Jode, MG ;
Wragg, P ;
Vale, JA ;
Gedroyc, WMW .
BJU INTERNATIONAL, 2002, 90 (09) :814-822
[9]  
Felden A, 2002, Biomed Tech (Berl), V47 Suppl 1 Pt 1, P2, DOI 10.1515/bmte.2002.47.s1a.2
[10]   System for robotically assisted prostate biopsy and therapy with intraoperative CT guidance [J].
Fichtinger, G ;
DeWeese, TL ;
Patriciu, A ;
Tanacs, A ;
Mazilu, D ;
Anderson, JH ;
Masamune, K ;
Taylor, RH ;
Stoianovici, D .
ACADEMIC RADIOLOGY, 2002, 9 (01) :60-74