Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion

被引:200
作者
Ota, N
Agard, DA [1 ]
机构
[1] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
anisotropic thermal diffusion; non-equilibrium molecular dynamics simulation; intramolecular signaling pathway; PDZ domain; PSD-95;
D O I
10.1016/j.jmb.2005.05.043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A variety of experimental evidence suggests that rapid, long-range propagation of conformational changes through the core of proteins plays a vital role in allosteric communication. Here, we describe a non-equilibrium molecular dynamics simulation method, anisotropic thermal diffusion (ATD), which allowed us to observe a dominant intramolecular signaling pathway in PSD-95, a member of the PDZ domain protein family The observed pathway is in good accordance with a pathway previously inferred using a multiple sequence analysis of 276 PDZ domain proteins. In comparison with conventional solution molecular dynamics methods, the ATD method provides greatly enhanced signal-to-noise, allowing long-distance correlations to be observed clearly. The ATD method requires neither a large number of homologous proteins, nor extremely long simulation times to obtain a complete signaling pathway within a protein. Therefore, the ATD method should prove to be a powerful and general complement to experimental efforts to understand the physical basis of intramolecular signaling. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:345 / 354
页数:10
相关论文
共 28 条
[1]  
Allen M. P., 2009, Computer Simulation of Liquids
[2]  
[Anonymous], [No title captured]
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   POLAR HYDROGEN POSITIONS IN PROTEINS - EMPIRICAL ENERGY PLACEMENT AND NEUTRON-DIFFRACTION COMPARISON [J].
BRUNGER, AT ;
KARPLUS, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1988, 4 (02) :148-156
[5]   Protein molecular dynamics with the generalized Born/ACE solvent model [J].
Calimet, N ;
Schaefer, M ;
Simonson, T .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2001, 45 (02) :144-158
[6]   Crystal structures of a complexed and peptide-free membrane protein-binding domain: Molecular basis of peptide recognition by PDZ [J].
Doyle, DA ;
Lee, A ;
Lewis, J ;
Kim, E ;
Sheng, M ;
MacKinnon, R .
CELL, 1996, 85 (07) :1067-1076
[7]   Uncovering molecular mechanisms involved in activation of G protein-coupled receptors [J].
Gether, U .
ENDOCRINE REVIEWS, 2000, 21 (01) :90-113
[8]   Role of electrostatic interactions in PDZ domain ligand recognition [J].
Harris, BZ ;
Lau, FW ;
Fujii, N ;
Guy, RK ;
Lim, WA .
BIOCHEMISTRY, 2003, 42 (10) :2797-2805
[9]   HARMONICITY AND ANHARMONICITY IN PROTEIN DYNAMICS - A NORMAL-MODE ANALYSIS AND PRINCIPAL COMPONENT ANALYSIS [J].
HAYWARD, S ;
KITAO, A ;
GO, N .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1995, 23 (02) :177-186
[10]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935