Role of 14-3-3 proteins in eukaryotic signaling and development

被引:135
作者
Darling, DL [1 ]
Yingling, J
Wynshaw-Boris, A
机构
[1] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
来源
CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY, VOLUME 68 | 2005年 / 68卷
关键词
D O I
10.1016/S0070-2153(05)68010-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
14-3-3 genes encode a ubiquitous family of highly conserved eukaryotic proteins from fungi to humans and plants with several molecular and cellular functions. Most notably, 14-3-3 proteins bind to phosphoserine/phosphothreonine motifs in a sequence-specific manner. More than 100 14-3-3 binding partners involved in signal transduction, cell cycle regulation, apoptosis, stress responses, and malignant transformation have been identified. The 14-3-3 proteins form homodimers and heterodimers, and there is redundancy of the binding specificity and function of different 14-3-3 proteins because of their highly similar amino acid sequence and tertiary structure. 14-3-3 proteins can regulate target protein function by several mechanisms. Although the molecular and cellular functions of 14-3-3 proteins have been well studied, there have been fewer studies addressing the in vivo role of 14-3-3s. Here we review what is known about 14-3-3 proteins during eukaryotic development. (c) 2005, Elsevier Inc.
引用
收藏
页码:281 / +
页数:40
相关论文
共 167 条
[1]   14-3-3 connects glycogen synthase kinase-3β to tau within a brain microtubule-associated tau phosphorylation complex [J].
Agarwal-Mawal, A ;
Qureshi, HY ;
Cafferty, PW ;
Yuan, ZF ;
Han, D ;
Lin, RT ;
Paudet, HK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (15) :12722-12728
[2]  
AITKEN A, 1990, NATURE, V344, P594
[3]   14-3-3-ALPHA AND 14-3-3-DELTA ARE THE PHOSPHORYLATED FORMS OF RAF-ACTIVATING 14-3-3-BETA AND 14-3-3-ZETA - IN-VIVO STOICHIOMETRIC PHOSPHORYLATION IN BRAIN AT A SER-PRO-GLU-LYS MOTIF [J].
AITKEN, A ;
HOWELL, S ;
JONES, D ;
MADRAZO, J ;
PATEL, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (11) :5706-5709
[4]   14-3-3 PROTEINS - A HIGHLY CONSERVED, WIDESPREAD FAMILY OF EUKARYOTIC PROTEINS [J].
AITKEN, A ;
COLLINGE, DB ;
VANHEUSDEN, BPH ;
ISOBE, T ;
ROSEBOOM, PH ;
ROSENFELD, G ;
SOLL, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (12) :498-501
[5]   Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. [J].
Aitken, A .
PLANT MOLECULAR BIOLOGY, 2002, 50 (06) :993-1010
[6]   Phosphorylated nitrate reductase and 14-3-3 proteins - Site of interaction, effects of ions, and evidence for an AMP-binding site on 14-3-3 proteins [J].
Athwal, GS ;
Huber, JL ;
Huber, SC .
PLANT PHYSIOLOGY, 1998, 118 (03) :1041-1048
[7]   Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase [J].
Athwal, GS ;
Huber, SC .
PLANT JOURNAL, 2002, 29 (02) :119-129
[8]   A COMPONENT OF CALCIUM-ACTIVATED POTASSIUM CHANNELS ENCODED BY THE DROSOPHILA-SLO LOCUS [J].
ATKINSON, NS ;
ROBERTSON, GA ;
GANETZKY, B .
SCIENCE, 1991, 253 (5019) :551-555
[9]   14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases [J].
Bachmann, M ;
Huber, JL ;
Athwal, GS ;
Wu, K ;
Ferl, RJ ;
Huber, SC .
FEBS LETTERS, 1996, 398 (01) :26-30
[10]   The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors [J].
Beck, T ;
Hall, MN .
NATURE, 1999, 402 (6762) :689-692