PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana

被引:254
作者
Nakamichi, N [1 ]
Kita, M [1 ]
Ito, S [1 ]
Yamashino, T [1 ]
Mizuno, T [1 ]
机构
[1] Nagoya Univ, Sch Agr, Mol Microbiol Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
Arabidopsis; circadian rhythms; control of flowering; light signaling; pseudo-response regulator;
D O I
10.1093/pcp/pci086
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In Arabidopsis thaliana, a number of clock-associated protein components have been identified. Among them, CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL) and TOC1 (TIMING OF CAB EXPRESSION 1) are believed to be the essential components of the central oscillator. CCA1 and LHY are homologous and partially redundant Myb-related DNA-binding proteins, whereas TOC1 is a member of a small family of proteins, designated as PSEUDO-RESPONSE REGULATOR. It is also believed that these two different types of clock components form an autoregulatory positive/negative feedback loop at the levels of transcription/translation that generates intrinsic rhythms. Nonetheless, it was not yet certain whether or not other PRR family members (PRR9, PRR7, PRR5 and PRR3) are implicated in clock function per se. Employing a set of prr9, prr7 and prr5 mutant alleles, here we established all possible single, double and triple prr mutants. They were examined extensively by comparing them with each other with regard to their phenotypes of circadian rhythms, photoperiodicity-dependent control of flowering time and photomorphogenic responses to red light during de-etiolation. Notably, the prr9 prr7 prr5 triple lesions in plants resulted in severe phenotypes: (i) arrhythmia in the continuous light conditions, and an anomalous phasing of diurnal oscillation of certain circadian-controlled genes even in the entrained light/dark cycle conditions; (ii) late flowering that was no longer sensitive to the photoperiodicity; and (iii) hyposensitivity (or blind) to red light in the photomorphogenic responses. The phenotypes of the single and double mutants were also characterized extensively, showing that they exhibited circadian-associated phenotypes characteristic for each. These results are discussed from the viewpoint that PRR9/PRR7/PRR5 together act as period-controlling factors, and they play overlapping and distinctive roles close to (or within) the central oscillator in which the relative, PRR1/TOC1, plays an essential role.
引用
收藏
页码:686 / 698
页数:13
相关论文
共 60 条
[1]   Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis [J].
Alabadí, D ;
Yanovsky, MJ ;
Más, P ;
Harmer, SL ;
Kay, SA .
CURRENT BIOLOGY, 2002, 12 (09) :757-761
[2]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[3]   Day-length perception and the photoperiodic regulation of flowering in Arabidopsis [J].
Carré, IA .
JOURNAL OF BIOLOGICAL RHYTHMS, 2001, 16 (04) :415-423
[4]   ELF3 modulates resetting of the circadian clock in Arabidopsis [J].
Covington, MF ;
Panda, S ;
Liu, XL ;
Strayer, CA ;
Wagner, DR ;
Kay, SA .
PLANT CELL, 2001, 13 (06) :1305-1315
[5]   Signalling in light-controlled development [J].
Deng, XW ;
Quail, PH .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1999, 10 (02) :121-129
[6]   Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis [J].
Dowson-Day, MJ ;
Millar, AJ .
PLANT JOURNAL, 1999, 17 (01) :63-71
[7]   The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana [J].
Doyle, MR ;
Davis, SJ ;
Bastow, RM ;
McWatters, HG ;
Kozma-Bognár, L ;
Nagy, F ;
Millar, AJ ;
Amasino, RM .
NATURE, 2002, 419 (6902) :74-77
[8]   Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock [J].
Eriksson, ME ;
Hanano, S ;
Southern, MM ;
Hall, A ;
Millar, AJ .
PLANTA, 2003, 218 (01) :159-162
[9]   The circadian clock. A plant's best friend in a spinning world [J].
Eriksson, ME ;
Millar, AJ .
PLANT PHYSIOLOGY, 2003, 132 (02) :732-738
[10]   Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock [J].
Farré, EM ;
Harmer, SL ;
Harmon, FG ;
Yanovsky, MJ ;
Kay, SA .
CURRENT BIOLOGY, 2005, 15 (01) :47-54