Chaotic motion of a symmetric gyro subjected to a harmonic base excitation

被引:47
作者
Tong, X
Mrad, N
机构
[1] Lucent Technol, Middletown, NJ 07724 USA
[2] Natl Res Council Canada, Inst Aerosp Res, Struct Mat & Prop Lab, Ottawa, ON K1A 0R6, Canada
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2001年 / 68卷 / 04期
关键词
D O I
10.1115/1.1379036
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Chaotic motion of a symmetric gyro subjected to a harmonic base excitation is investigated in this note. The Melnikov method is applied to show that the system possesses a Smale horse when it is subjected to small excitation. The transition from regular motion to chaotic motion is investigated through numerical integration in conjunction with Poincare map. It is shown that as the spin velocity increases, the chaotic motion turns into a regular motion.
引用
收藏
页码:681 / 684
页数:4
相关论文
共 11 条
[1]   CHAOTIC MOTIONS AND TRANSITION TO STOCHASTICITY IN THE CLASSICAL PROBLEM OF THE HEAVY RIGID BODY WITH A FIXED-POINT [J].
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1981, 61 (01) :1-20
[2]   The regular and chaotic motions of a symmetric heavy gyroscope with harmonic excitation [J].
Ge, ZM ;
Chen, HK ;
Chen, HH .
JOURNAL OF SOUND AND VIBRATION, 1996, 198 (02) :131-147
[3]  
Goldstein H, 1980, CLASSICAL MECH
[4]  
GUCKENHEIMER J, 1985, NONLINEAR OSCILLATOR
[5]   HORSESHOES AND ARNOLD DIFFUSION FOR HAMILTONIAN-SYSTEMS ON LIE-GROUPS [J].
HOLMES, PJ ;
MARSDEN, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (02) :273-309
[6]  
KOZLOV VV, 1976, MOSCOW U MATH MECH B, V31, P55
[7]  
Lichtenberg A., 1992, REGULAR STOCHASTIC M, V2nd edn
[8]  
Melnikov VK., 1963, Trans. Moscow Math. Soc, V12, P1
[9]   Bifurcation of self-excited rigid bodies subjected to small perturbation torques [J].
Tong, X ;
Tabarrok, B .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1997, 20 (01) :123-128
[10]   CHAOTIC MOTION OF AN ASYMMETRIC GYROSTAT IN THE GRAVITATIONAL-FIELD [J].
TONG, X ;
TABARROK, B ;
RIMROTT, FPJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1995, 30 (03) :191-203