Reduced lecithin:retinol acyl transferase activity in cultured squamous cell carcinoma lines results in increased substrate-driven retinoic acid synthesis

被引:11
作者
Jurukovski, V
Simon, M [1 ]
机构
[1] SUNY Stony Brook, Sch Dent Med, Dept Oral Biol & Pathol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Sch Med, Dept Dermatol, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Univ Hosp, Living Skin Bank, Stony Brook, NY 11794 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS | 1999年 / 1436卷 / 03期
关键词
retinol; metabolism; carcinoma; keratinocyte; esterification;
D O I
10.1016/S0005-2760(98)00154-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The uptake and metabolism of retinol was compared in squamous cell carcinoma lines, SCC12b and SCC13, and in normal human keratinocytes (NHK). Long chain fatty acid esters of retinol and 3,4-didehydroretinol were the predominant metabolites formed in both cell types. Lesser amounts of unesterified retinol, 3,4-didehydroretinol, and their respective active acid forms were also observed. Despite a qualitatively similar retinoid composition, there were significant quantitative differences between cell types. Most notable was that SCC formed only about one-fourth the retinoid ester as did normal cells, In parallel with this, unesterified retinol and retinoic acid concentrations in SCC were significantly elevated over those in normal cells. This altered pattern of retinoid metabolites in SCC was found to be due to very low lecithin:retinol acyltransferase (LRAT) activity. SCC exhibited less than one-tenth the LRAT activity of normal cells. Acyl-coenzyme A:retinol acyltransferase (ARAT) and retinyl ester hydrolase activities were not different between cell types. Challenging cells with increasing medium retinol concentrations resulted in dose-dependent increases in retinol and retinoic acid within SCC, In contrast, retinol and retinoic acid concentrations in similarly challenged normal cells remained relatively low across a wide retinol concentration range. This was accomplished by the storage of retinol, via LRAT activity, as retinyl ester. Consistent with increased substrate-driven retinoic acid synthesis in SCC, the expression of transglutaminase 1 was suppressed to a greater extent in the SCCs than in NHK, when cells were exposed to equivalent medium concentrations of retinol. The data demonstrate a central role of LRAT in regulating retinoic acid synthesis via its capacity to modulate cellular levels of substrate retinol. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:479 / 490
页数:12
相关论文
共 57 条
[1]   Mouse P450RAI (CYP26) expression and retinoic acid-inducible retinoic acid metabolism in F9 cells are regulated by retinoic acid receptor γ and retinoid X receptor α [J].
Abu-Abed, SS ;
Beckett, BR ;
Chiba, H ;
Chithalen, JV ;
Jones, G ;
Metzger, D ;
Chambon, P ;
Petkovich, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (04) :2409-2415
[2]   RETINOID-DEPENDENT TRANSCRIPTIONAL SUPPRESSION OF CYTOKERATIN GENE-EXPRESSION IN HUMAN EPIDERMAL SQUAMOUS-CELL CARCINOMA-CELLS [J].
AGARWAL, C ;
RORKE, EA ;
BOYCE, M ;
HOWARD, J ;
CRISH, J ;
HUFEISEN, S ;
ECKERT, RL .
DIFFERENTIATION, 1993, 52 (02) :185-191
[3]   RETINOIC ACID IMPROVES EPIDERMAL MORPHOGENESIS [J].
ASSELINEAU, D ;
BERNARD, BA ;
BAILLY, C ;
DARMON, M .
DEVELOPMENTAL BIOLOGY, 1989, 133 (02) :322-335
[4]  
BARUA AB, 1990, METHOD ENZYMOL, V189, P136
[5]  
BERNE B, 1989, ACTA DERM-VENEREOL, V69, P503
[6]  
Blaner William S., 1994, P229
[7]   Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines [J].
Braakhuis, BJM ;
Klaassen, I ;
vanderLeede, BM ;
Cloos, J ;
Brakenhoff, RH ;
Copper, MP ;
Teerlink, T ;
Hendriks, HFJ ;
vanderSaag, PT ;
Snow, GB .
BRITISH JOURNAL OF CANCER, 1997, 76 (02) :189-197
[8]  
Chatellard-Gruaz D, 1998, J LIPID RES, V39, P1421
[9]  
CLINE PR, 1983, CANCER RES, V43, P3203
[10]  
FURR HC, 1990, METHOD ENZYMOL, V189, P85