Effect of carbon black support corrosion on the durability of Pt/C catalyst

被引:435
作者
Wang, Jiajun
Yin, Geping
Shao, Yuyan
Zhang, Sheng
Wang, Zhenbo
Gao, Yunzhi
机构
[1] Harbin Inst Technol, Dept Appl Chem, Lab Electrochem, Harbin 150001, Peoples R China
[2] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
基金
中国国家自然科学基金;
关键词
PEM fuel cells; Pt/C catalyst; carbon black; durability; corrosion;
D O I
10.1016/j.jpowsour.2007.06.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The work intends to clarify the effect of carbon black support corrosion on the stability of Pt/C catalyst. The corrosion investigations of carbon blacks with similar structures and characteristics were analyzed by cyclic voltammograms (CV) and X-ray photoelectron spectroscopy (XPS). The results indicate that a higher oxidation degree appears on the Black Pearl 2000 (BP-2000) support, i.e. BP-2000 has a lower corrosion resistance than Vulcan XC-72 (XC-72). The durability investigation of Pt supported on the two carbon blacks was evaluated by a potential cycling test between 0.6 and 1.2 V versus reversible hydrogen electrode (RHE). A higher performance loss was observed on the Pt/BP-2000 gas diffusion electrode (GDE), compared with that of Pt/XC-72. XPS analysis suggests that higher Pt amount loss appeared in the Pt/BP-2000 GDE after durability test. X-ray diffraction (XRD) analysis also shows that Pt/BP-2000 catalyst presents a higher Pt size growth. The higher performance degradation of Pt/BP-2000 is attributed significantly to the less support corrosion resistance of BP-2000. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 339
页数:9
相关论文
共 36 条
[1]  
[Anonymous], [No title captured], DOI DOI 10.1016/J.ELECOM.2005.01.008
[2]   Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells [J].
Antolini, E .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (14) :2995-3005
[3]   PEM fuel cell electrocatalyst durability measurements [J].
Borup, Rod L. ;
Davey, John R. ;
Garzon, Fernando H. ;
Wood, David L. ;
Inbody, Michael A. .
JOURNAL OF POWER SOURCES, 2006, 163 (01) :76-81
[4]   Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes [J].
Carmo, M ;
Paganin, VA ;
Rosolen, JM ;
Gonzalez, ER .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :169-176
[5]   Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors [J].
Chen, JH ;
Li, WZ ;
Wang, DZ ;
Yang, SX ;
Wen, JG ;
Ren, ZF .
CARBON, 2002, 40 (08) :1193-1197
[6]   Catalyst microstructure examination of PEMFC membrane electrode assemblies vs. time [J].
Cheng, X ;
Chen, L ;
Peng, C ;
Chen, ZW ;
Zhang, Y ;
Fan, QB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) :A48-A52
[7]   PREPARATION OF PLATINUM SUPPORTED ON PREGRAPHITIZED CARBON-BLACKS [J].
COLOMA, F ;
SEPULVEDAESCRIBANO, A ;
FIERRO, JLG ;
RODRIGUEZREINOSO, F .
LANGMUIR, 1994, 10 (03) :750-755
[8]   Stability of platinum based alloy cathode catalysts in PEM fuel cells [J].
Colón-Mercado, HR ;
Popov, BN .
JOURNAL OF POWER SOURCES, 2006, 155 (02) :253-263
[9]   Durability study Of Pt3Ni1 catalysts as cathode in PEM fuel cells [J].
Colón-Mercado, HR ;
Kim, H ;
Popov, BN .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (08) :795-799
[10]   Kinetic model of platinum dissolution in PEMFCs [J].
Darling, RM ;
Meyers, JP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1523-A1527