Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli

被引:216
作者
Eto, Danelle S. [1 ]
Jones, Tiffani A. [1 ]
Sundsbak, Jamie L. [1 ]
Mulvey, Matthew A. [1 ]
机构
[1] Univ Utah, Dept Pathol, Div Cell Biol & Immunol, Salt Lake City, UT USA
关键词
D O I
10.1371/journal.ppat.0030100
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, typically express filamentous adhesive organelles called type 1 pili that mediate both bacterial attachment to and invasion of bladder urothelial cells. Several host proteins have previously been identified as receptors for type 1 pili, but none have been conclusively shown to promote UPEC entry into host bladder cells. Using overlay assays with FimH, the purified type 1 pilus adhesin, and mass spectroscopy, we have identified beta 1 and alpha 3 integrins as key host receptors for UPEC. FimH recognizes N-linked oligosaccharides on these receptors, which are expressed throughout the urothelium. In a bladder cell culture system, beta 1 and alpha 3 integrin receptors co-localize with invading type 1-piliated bacteria and F-actin. FimH-mediated bacterial invasion of host bladder cells is inhibited by beta 1 and alpha 3 integrin-specific antibodies and by disruption of the beta 1 integrin gene in the GD25 fibroblast cell line. Phosphorylation site mutations within the cytoplasmic tail of beta 1 integrin that alter integrin signaling also variably affect UPEC entry into host cells, by either attenuating or boosting invasion frequencies. Furthermore, focal adhesion and Src family kinases, which propagate integrin-linked signaling and downstream cytoskeletal rearrangements, are shown to be required for FimH-dependent bacterial invasion of target host cells. Cumulatively, these results indicate that beta 1 and alpha 3 integrins are functionally important receptors for type 1 pili-expressing bacteria within the urinary tract and possibly at other sites within the host.
引用
收藏
页码:949 / 961
页数:13
相关论文
共 102 条
[1]   CONSERVATION OF THE D-MANNOSE-ADHESION PROTEIN AMONG TYPE-1 FIMBRIATED MEMBERS OF THE FAMILY ENTEROBACTERIACEAE [J].
ABRAHAM, SN ;
SUN, DX ;
DALE, JB ;
BEACHEY, EH .
NATURE, 1988, 336 (6200) :682-684
[2]   Intracellular bacterial biofilm-like pods in urinary tract infections [J].
Anderson, GG ;
Palermo, JJ ;
Schilling, JD ;
Roth, R ;
Heuser, J ;
Hultgren, SJ .
SCIENCE, 2003, 301 (5629) :105-107
[3]   The uroepithelium: Not just a passive barrier [J].
Apodaca, G .
TRAFFIC, 2004, 5 (03) :117-128
[4]   Integrin structure, allostery, and bidirectional signaling [J].
Arnaout, MA ;
Mahalingam, B ;
Xiong, JP .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2005, 21 :381-410
[5]   Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract [J].
Bahrani-Mougeot, FK ;
Buckles, EL ;
Lockatell, CV ;
Hebel, JR ;
Johnson, DE ;
Tang, CM ;
Donnenberg, MS .
MOLECULAR MICROBIOLOGY, 2002, 45 (04) :1079-1093
[6]   Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic [J].
Baorto, DM ;
Gao, ZM ;
Malaviya, R ;
Dustin, ML ;
vanderMerwe, A ;
Lublin, DM ;
Abraham, SN .
NATURE, 1997, 389 (6651) :636-639
[7]   Variant glycosylation:: an underappreciated regulatory mechanism for β1 integrins [J].
Bellis, SL .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1663 (1-2) :52-60
[8]  
Berditchevski F, 2001, J CELL SCI, V114, P4143
[9]  
Bodeau AL, 2001, J CELL SCI, V114, P2795
[10]   The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes [J].
Bouckaert, Julie ;
Mackenzie, Jenny ;
de Paz, Jose L. ;
Chipwaza, Beatrice ;
Choudhury, Devapriya ;
Zavialov, Anton ;
Mannerstedt, Karin ;
Anderson, Jennifer ;
Pierard, Denis ;
Wyns, Lode ;
Seeberger, Peter H. ;
Oscarson, Stefan ;
De Greve, Henri ;
Knight, Stefan D. .
MOLECULAR MICROBIOLOGY, 2006, 61 (06) :1556-1568