The sensitivity of lipid domains to small perturbations demonstrated by the effect of triton

被引:134
作者
Heerklotz, H [1 ]
Szadkowska, H [1 ]
Anderson, T [1 ]
Seelig, J [1 ]
机构
[1] Univ Basel, Biozentrum, Div Biophys Chem, CH-4056 Basel, Switzerland
关键词
lipid rafts; sphingomyelin; cholesterol; ITC; enthalpy;
D O I
10.1016/S0022-2836(03)00504-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hypothesis of lipid rafts describes functional domains in biological membranes. It is often assumed that rafts form by spontaneous de-mixing of certain lipids and that they can be isolated as detergent-resistant membrane particles (DRMs) using the detergent Triton X-100 (TX). Here, we present a model that describes the process of domain formation in membranes in the presence and in the absence of TX We measure the interactions between TX and an equimolar mixture of sphingomyelin (SM), cholesterol (Cho), and 1-palmitoyl-2-oleoyl-3-sn-glycero-phosphatidylcholine (POPC) (1:1:1, mol) by means of isothermal titration calorimetry. Comparison with pure POPC membranes, reveals a very unfavorable interaction between TX and SM/Cho, which causes a substantial tendency to segregate these molecules into separate, DRM-like (SM-rich) and fluid (TX-rich), domains. If rafts are indeed formed by spontaneous de-mixing of PC and SM/Cho, they must be very sensitive, and perturbations caused by techniques used to study rafts could lead to misleading results. If, however, rafts, are much more stable than PC-SM-Cho domains, there must be an unknown raft stabilizer. Subtle changes of such a promoter could serve to modulate raft function. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:793 / 799
页数:7
相关论文
共 24 条
[1]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[2]   Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? [J].
Brown, DA ;
London, E .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 240 (01) :1-7
[3]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[4]   Lipid rafts reconstituted in model membranes [J].
Dietrich, C ;
Bagatolli, LA ;
Volovyk, ZN ;
Thompson, NL ;
Levi, M ;
Jacobson, K ;
Gratton, E .
BIOPHYSICAL JOURNAL, 2001, 80 (03) :1417-1428
[5]   Shrinking patches and slippery rafts: scales of domains in the plasma membrane [J].
Edidin, M .
TRENDS IN CELL BIOLOGY, 2001, 11 (12) :492-496
[6]  
EDIDIN M, 2003, ANNU REV BIOPH BIOM, V16, P16
[7]   Protein-induced formation of cholesterol-rich domains [J].
Epand, RM ;
Maekawa, S ;
Yip, CM ;
Epand, RF .
BIOCHEMISTRY, 2001, 40 (35) :10514-10521
[8]   THERMAL-BEHAVIOR OF SYNTHETIC SPHINGOMYELIN-CHOLESTEROL DISPERSIONS [J].
ESTEP, TN ;
MOUNTCASTLE, DB ;
BARENHOLZ, Y ;
BILTONEN, RL ;
THOMPSON, TE .
BIOCHEMISTRY, 1979, 18 (10) :2112-2117
[9]   ROLE OF INTERACTIONS AT THE LIPID-WATER INTERFACE FOR DOMAIN FORMATION [J].
GAWRISCH, K ;
BARRY, JA ;
HOLTE, LL ;
SINNWELL, T ;
BERGELSON, LD ;
FERRETTI, JA .
MOLECULAR MEMBRANE BIOLOGY, 1995, 12 (01) :83-88
[10]   Triton promotes domain formation in lipid raft mixtures [J].
Heerklotz, H .
BIOPHYSICAL JOURNAL, 2002, 83 (05) :2693-2701