Spatial-Temporal Solar Power Forecasting for Smart Grids

被引:127
作者
Bessa, Ricardo J. [1 ]
Trindade, Artur [2 ,3 ]
Miranda, Vladimiro [2 ,3 ]
机构
[1] INESC TEC Inst Engn Sistemas & Comp Tecnol & Cien, P-4200465 Oporto, Portugal
[2] INESC TEC, P-4200465 Oporto, Portugal
[3] FEUP, P-4200465 Oporto, Portugal
关键词
Distribution network; forecasting; smart grid; smart metering; solar power; spatial-temporal; NETWORKS;
D O I
10.1109/TII.2014.2365703
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The solar power penetration in distribution grids is growing fast during the last years, particularly at the low-voltage (LV) level, which introduces new challenges when operating distribution grids. Across the world, distribution system operators (DSO) are developing the smart grid concept, and one key tool for this new paradigm is solar power forecasting. This paper presents a new spatial-temporal forecasting method based on the vector autoregression framework, which combines observations of solar generation collected by smart meters and distribution transformer controllers. The scope is 6-h-ahead forecasts at the residential solar photovoltaic and medium-voltage (MV)/LV substation levels. This framework has been tested in the smart grid pilot of vora, Portugal, and using data from 44 microgeneration units and 10 MV/LV substations. A benchmark comparison was made with the autoregressive forecasting model (AR-univariate model) leading to an improvement on average between 8% and 10%.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 32 条
[1]   Short-term power forecasting system for photovoltaic plants [J].
Alfredo Fernandez-Jimenez, L. ;
Munoz-Jimenez, Andres ;
Falces, Alberto ;
Mendoza-Villena, Montserrat ;
Garcia-Garrido, Eduardo ;
Lara-Santillan, Pedro M. ;
Zorzano-Alba, Enrique ;
Zorzano-Santamaria, Pedro J. .
RENEWABLE ENERGY, 2012, 44 :311-317
[2]  
[Anonymous], 2002, INTRO ECONOMETRICS M
[3]  
[Anonymous], 2003, ECONOMETRIC THEORY M
[4]   Online short-term solar power forecasting [J].
Bacher, Peder ;
Madsen, Henrik ;
Nielsen, Henrik Aalborg .
SOLAR ENERGY, 2009, 83 (10) :1772-1783
[5]  
Berdugo V., 2011, P WORLD REN EN FOR D, P1
[6]   Handling renewable energy variability and uncertainty in power systems operation [J].
Bessa, Ricardo ;
Moreira, Carlos ;
Silva, Bernardo ;
Matos, Manuel .
WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2014, 3 (02) :156-178
[7]   Evaluating Combined Load Forecasting in Large Power Systems and Smart Grids [J].
Borges, Cruz E. ;
Penya, Yoseba K. ;
Fernandez, Ivan .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (03) :1570-1577
[8]   Boosting for high-dimensional linear models [J].
Buhlmann, Peter .
ANNALS OF STATISTICS, 2006, 34 (02) :559-583
[9]  
Diagne H.M., 2012, World Renewable Energy Forum, P1
[10]   COMPARING PREDICTIVE ACCURACY [J].
DIEBOLD, FX ;
MARIANO, RS .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1995, 13 (03) :253-263