Design of evolutionary algorithms -: A statistical perspective

被引:33
作者
François, O [1 ]
Lavergne, C
机构
[1] Ecole Natl Super Informat & Math Appl, F-38041 Grenoble 9, France
[2] Inst Natl Rech & Informat & Automat, F-38334 Saint Ismier, France
关键词
evolutionary algorithm; experimental design; gamma distribution; generalized linear model;
D O I
10.1109/4235.918434
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a statistical method that helps to find good parameter settings for evolutionary algorithms. The method builds a functional relationship between the algorithm's performance and its parameter values. This relationship-a statistical model-can be identified thanks to simulation data. Estimation and test procedures are used to evaluate the effect of parameter variation. In addition, good parameter settings can be investigated with a reduced number of experiments, Problem labeling can also be considered as a model variable and the method enables identifying classes of problems for which the algorithm behaves similarly. Defining such classes increases the quality of estimations without increasing the computational cost.
引用
收藏
页码:129 / 148
页数:20
相关论文
共 42 条
[1]  
Aarts E., 1988, SIMULATED ANNEALING
[2]  
[Anonymous], 1991, Handbook of genetic algorithms
[3]  
BACK T, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P2
[4]  
Back T, 1996, EVOLUTIONARY ALGORIT
[5]   An Overview of Evolutionary Algorithms for Parameter Optimization [J].
Baeck, Thomas ;
Schwefel, Hans-Paul .
EVOLUTIONARY COMPUTATION, 1993, 1 (01) :1-23
[6]  
Bergeret F, 1997, COMPUTATION STAT, V12, P447
[7]  
Chambers J. M., 1991, STAT MODELS S
[8]  
DAVIDOR Y, 1991, FDN GENETIC ALGORITH, P29
[9]  
Davis L., 1991, PROC INT C GENETIC A, P18
[10]  
DEJONG KA, 1975, THESIS U MICHIGAN AN