Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes

被引:36
作者
Hsu, Min-Hsiang [1 ,2 ]
Yu, Peichen [1 ,2 ]
Huang, Jen-Hsien [3 ,4 ]
Chang, Chia-Hua [1 ,2 ]
Wu, Chien-Wei [5 ]
Cheng, Yu-Chih [1 ,2 ]
Chu, Chih-Wei [3 ]
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu 30010, Taiwan
[3] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
[4] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
[5] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan
关键词
POLYTHIOPHENE; ELECTRODES; LAYER;
D O I
10.1063/1.3556565
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we present evidence of balanced electron and hole transport in polymer-fullerene based solar cells by means of embedded indium-tin-oxide nanoelectrodes. Enabled by a controllable electrochemical deposition, the individual nanoelectrodes are uniformly enclosed by a poly (3,4-ethylenedioxythiophene) hole-conducting layer, allowing a relatively short route for holes to reach the anode and hence increasing the effective hole mobility. Consequently, the power conversion efficiency and photogenerated current are maximized with a deposition condition of 50 mu C, where the ratio of the electron to hole mobility is nearly unity. (C) 2011 American Institute of Physics. [doi:10.1063/1.3556565]
引用
收藏
页数:3
相关论文
共 16 条
[1]   Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells [J].
Arenas, M. C. ;
Mendoza, N. ;
Cortina, Hugo ;
Nicho, M. E. ;
Hu, Hailin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (01) :29-33
[2]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[3]   EFFICIENT PHOTODIODES FROM INTERPENETRATING POLYMER NETWORKS [J].
HALLS, JJM ;
WALSH, CA ;
GREENHAM, NC ;
MARSEGLIA, EA ;
FRIEND, RH ;
MORATTI, SC ;
HOLMES, AB .
NATURE, 1995, 376 (6540) :498-500
[4]   Controlled Growth of Nanofiber Network Hole Collection Layers with Pore Structure for Polymer-Fullerene Solar Cells [J].
Huang, Jen-Hsien ;
Ho, Zhong-Yo ;
Kekuda, Dhananjay ;
Chu, Chih-Wei ;
Ho, Kuo-Chuan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (48) :19125-19130
[5]   A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells [J].
Kim, Y ;
Cook, S ;
Tuladhar, SM ;
Choulis, SA ;
Nelson, J ;
Durrant, JR ;
Bradley, DDC ;
Giles, M ;
Mcculloch, I ;
Ha, CS ;
Ree, M .
NATURE MATERIALS, 2006, 5 (03) :197-203
[6]   Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells [J].
Kim, Youngkyoo ;
Ballantyne, Amy M. ;
Nelson, Jenny ;
Bradley, Donal D. C. .
ORGANIC ELECTRONICS, 2009, 10 (01) :205-209
[7]   Highly oriented crystals at the buried interface in polythiophene thin-film transistors [J].
Kline, RJ ;
Mcgehee, MD ;
Toney, MF .
NATURE MATERIALS, 2006, 5 (03) :222-228
[8]   Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J].
Ma, WL ;
Yang, CY ;
Gong, X ;
Lee, K ;
Heeger, AJ .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (10) :1617-1622
[9]   Buoyancy and electrically driven convection models in thin-layer electrodeposition [J].
Marshall, G ;
Mocskos, P ;
Swinney, HL ;
Huth, JM .
PHYSICAL REVIEW E, 1999, 59 (02) :2157-2167
[10]   Diffraction gratings and buried nano-electrodes - architectures for organic solar cells [J].
Niggemann, M ;
Glatthaar, M ;
Gombert, A ;
Hinsch, A ;
Wittwer, V .
THIN SOLID FILMS, 2004, 451 :619-623