Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations

被引:244
作者
Eiler, A [1 ]
Langenheder, S [1 ]
Bertilsson, S [1 ]
Tranvik, LJ [1 ]
机构
[1] Uppsala Univ, Evolut Biol Ctr, Dept Limnol, SE-75236 Uppsala, Sweden
关键词
D O I
10.1128/AEM.69.7.3701-3709.2003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Batch cultures of aquatic bacteria and dissolved organic matter were used to examine the impact of carbon source concentration on bacterial growth, biomass, growth efficiency, and community composition. An aged concentrate of dissolved organic matter from a humic lake was diluted with organic compound-free artificial lake water to obtain concentrations of dissolved organic carbon (DOC) ranging from 0.04 to 2.53 mM. The bacterial biomass produced in the cultures increased linearly with the DOC concentration, indicating that bacterial biomass production was limited by the supply of carbon. The bacterial growth rate in the exponential growth phase exhibited a hyperbolic response to the DOC concentration, suggesting that the maximum growth rate was constrained by the substrate concentration at low DOC concentrations. Likewise, the bacterial growth efficiency calculated from the production of biomass and CO, increased asymptotically from 0.4 to 10.4% with increasing DOC concentration. The compositions of the microbial communities that emerged in the cultures were assessed by separation of PCR-amplified 16S rRNA fragments by denaturing gradient gel electrophoresis. Nonmetric multidimensional scaling of the gel profiles showed that there was a gradual change in the community composition along the DOC gradient; members of the P subclass of the class Proteobacteria and members of the Cytophaga-Flavobacterium group were well represented at all concentrations, whereas members of the alpha subclass of the Proteobacteria were found exclusively at the lowest carbon concentration. The shift in community composition along the DOC gradient was similar to the patterns of growth efficiency and growth rate. The results suggest that the bacterial growth efficiencies, the rates of bacterial growth, and the compositions of bacterial communities are not constrained by substrate concentrations in most natural waters, with the possible exception of the most oligotrophic environments.
引用
收藏
页码:3701 / 3709
页数:9
相关论文
共 58 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   Bacterial utilization of different size classes of dissolved organic matter [J].
Amon, RMW ;
Benner, R .
LIMNOLOGY AND OCEANOGRAPHY, 1996, 41 (01) :41-51
[3]  
AUSUBEL FM, 1998, CURRENT PROTOCOLS MO, V4
[4]   Bacterial utilization of dissolved humic substances from a freshwater swamp [J].
Bano, N ;
Moran, MA ;
Hodson, RE .
AQUATIC MICROBIAL ECOLOGY, 1997, 12 (03) :233-238
[5]   Photochemical transformation of dissolved organic matter in lakes [J].
Bertilsson, S ;
Tranvik, LJ .
LIMNOLOGY AND OCEANOGRAPHY, 2000, 45 (04) :753-762
[6]   DETERMINATION OF BACTERIOPLANKTON BIOMASS, NET PRODUCTION AND GROWTH EFFICIENCY IN THE SOUTHERN-OCEAN [J].
BJORNSEN, PK ;
KUPARINEN, J .
MARINE ECOLOGY PROGRESS SERIES, 1991, 71 (02) :185-194
[7]   BACTERIOPLANKTON GROWTH-YIELD IN CONTINUOUS SEAWATER CULTURES [J].
BJORNSEN, PK .
MARINE ECOLOGY PROGRESS SERIES, 1986, 30 (2-3) :191-196
[8]   Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea [J].
Carlson, CA ;
Ducklow, HW .
AQUATIC MICROBIAL ECOLOGY, 1996, 10 (01) :69-85
[9]   Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern [J].
Casamayor, EO ;
Massana, R ;
Benlloch, S ;
Ovreås, L ;
Díez, B ;
Goddard, VJ ;
Gasol, JM ;
Joint, I ;
Rodríguez-Valera, F ;
Pedrós-Alió, C .
ENVIRONMENTAL MICROBIOLOGY, 2002, 4 (06) :338-348
[10]   Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes:: Comparison by microscopy and denaturing gradient gel electrophoresis [J].
Casamayor, EO ;
Schäfer, H ;
Bañeras, L ;
Pedrós-Alió, C ;
Muyzer, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (02) :499-508