A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification

被引:114
作者
Brelidze, TI [1 ]
Niu, XW [1 ]
Magleby, KL [1 ]
机构
[1] Univ Miami, Sch Med, Dept Physiol & Biophys, Miami, FL 33136 USA
关键词
D O I
10.1073/pnas.1532257100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-conductance Ca2+-voltage-activated K+ channels (BK channels) control many key physiological processes, such as neurotransmitter release and muscle contraction. A signature feature of BK channels is that they have the largest single channel conductance of all K+ channels. Here we examine the mechanism of this large conductance. Comparison of the sequence of BK channels to lower-conductance K+ channels and to a crystallized bacterial K+ channel (MthK) revealed that BK channels have a ring of eight negatively charged glutamate residues at the entrance to the intracellular vestibule. This ring of charge, which is absent in lower-conductance K+ channels, is shown to double the conductance of BK channels for outward currents by increasing the concentration of K+ in the vestibule through an electrostatic mechanism. Removing the ring of charge converts BK channels to inwardly rectifying channels. Thus, a simple electrostatic mechanism contributes to the large conductance of BK channels.
引用
收藏
页码:9017 / 9022
页数:6
相关论文
共 48 条