Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices

被引:1292
作者
Xiao, Lixin [1 ,2 ]
Chen, Zhijian [1 ,2 ]
Qu, Bo [1 ,2 ]
Luo, Jiaxiu [1 ,2 ]
Kong, Sheng [1 ,2 ]
Gong, Qihuang [1 ,2 ]
Kido, Junji [3 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[3] Yamagata Univ, Dept Organ Device Engn, Yamagata 9928510, Japan
关键词
CYCLOMETALATED IRIDIUM COMPLEXES; ELECTRON-TRANSPORT MATERIALS; HIGHLY EFFICIENT RED; CHELATED RUTHENIUM(II) COMPLEX; INTERNAL QUANTUM EFFICIENCY; HOST MATERIALS; ELECTROLUMINESCENT DEVICES; PLATINUM(II) COMPLEXES; ELECTROGENERATED CHEMILUMINESCENCE; OPERATIONAL STABILITY;
D O I
10.1002/adma.201003128
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although organic light-emitting devices have been commercialized as flat panel displays since 1997, only singlet excitons were emitted. Full use of singlet and triplet excitons, electrophosphorescence, has attracted increasing attentions after the premier work made by Forrest, Thompson, and co-workers. In fact, red electrophosphorescent dye has already been used in sub-display of commercial mobile phones since 2003. Highly efficient green phosphorescent dye is now undergoing of commercialization. Very recently, blue phosphorescence approaching the theoretical efficiency has also been achieved, which may overcome the final obstacle against the commercialization of full color display and white light sources from phosphorescent materials. Combining light out-coupling structures with highly efficient phosphors ( shown in the table-of-contents image), white emission with an efficiency matching that of fluorescent tubes (90 lm/W) has now been realized. It is possible to tune the color to the true white region by changing to a deep blue emitter and corresponding wide gap host and transporting material for the blue phosphor. In this article, recent progresses in red, green, blue, and white electrophosphorescent materials for OLEDs are reviewed, with special emphasis on blue electrophosphorescent materials.
引用
收藏
页码:926 / 952
页数:27
相关论文
共 223 条
[1]   High-efficiency red electrophosphorescence devices [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Lamansky, S ;
Thompson, ME ;
Kwong, RC .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1622-1624
[2]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[3]   New charge-carrier blocking materials for high efficiency OLEDs [J].
Adamovich, VI ;
Cordero, SR ;
Djurovich, PI ;
Tamayo, A ;
Thompson, ME ;
D'Andrade, BW ;
Forrest, SR .
ORGANIC ELECTRONICS, 2003, 4 (2-3) :77-87
[4]   Syntheses and properties of novel quarterphenylene-based materials for blue organic light-emitting devices [J].
Agata, Yuya ;
Shimizu, Hitoshi ;
Kido, Junji .
CHEMISTRY LETTERS, 2007, 36 (02) :316-317
[5]   CARRIER DEEP-TRAPPING MOBILITY-LIFETIME PRODUCTS IN POLY(P-PHENYLENE VINYLENE) [J].
ANTONIADIS, H ;
ABKOWITZ, MA ;
HSIEH, BR .
APPLIED PHYSICS LETTERS, 1994, 65 (16) :2030-2032
[6]   High-purity white light from a simple single dopant host-guest white organic light-emitting diode architecture [J].
Anzenbacher, Pavel, Jr. ;
Montes, Victor A. ;
Takizawa, Shin-ya .
APPLIED PHYSICS LETTERS, 2008, 93 (16)
[7]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[8]   High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J].
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
NATURE, 2000, 403 (6771) :750-753
[9]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[10]   Synthesis and characterization of phosphorescent cyclometalated platinum complexes [J].
Brooks, J ;
Babayan, Y ;
Lamansky, S ;
Djurovich, PI ;
Tsyba, I ;
Bau, R ;
Thompson, ME .
INORGANIC CHEMISTRY, 2002, 41 (12) :3055-3066