Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries

被引:251
作者
Jeong, Hyun-Seok [1 ]
Lee, Sang-Young [1 ]
机构
[1] Kangwon Natl Univ, Dept Chem Engn, Chunchon 200701, Kangwondo, South Korea
关键词
Lithium-ion batteries; Composite separators; Ceramic coating layers; Close-packed SiO2 nanoparticles; Thermal shrinkage; Cell performances; THERMAL-STABILITY; CYCLING PERFORMANCE; MEMBRANES; LICOO2; CELLS;
D O I
10.1016/j.jpowsour.2010.11.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In an effort to improve thermal shrinkage and electrochemical performance of a separator for a lithium-ion battery, we develop a new composite separator by introducing ceramic coating layers onto both sides of a polyethylene (PE) separator. The ceramic coating layers are comprised of SiO2 nanoparticles and polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) binders. In comparison to the dense structure of conventional nanocomposite coating layers, the ceramic coating layers are featured with close-packed SiO2 nanoparticles, which affords a well-developed porous structure. i.e. highly connected interstitial voids formed between the nanoparticles. On the basis of this structural understanding of the composite separators, the effects of ceramic coating layers on the separator properties are investigated as a function of SiO2 powder size. Owing to the existence of the heat-resistant SiO2 coating layers, the composite separators show significant reduction in thermal shrinkage than the pristine PE separator. More intriguingly, in comparison to the large-sized (=530 nm) SiO2, the small-sized (=40 nm) SiO2 offers a large number of SiO2 nanoparticles in the ceramic coating layers, high porosity contributing to facile ion transport, and small increase in the cell impedance, which consequently allows substantial improvements in cell performances as well as thermal shrinkage of the separator. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:6716 / 6722
页数:7
相关论文
共 22 条
[1]  
Ahn S., 2007, LITHIUM MOBILE POWER
[2]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[3]   Ceramic but flexible:: new ceramic membrane foils for fuel cells and batteries [J].
Augustin, S ;
Hennige, V ;
Hörpel, G ;
Hying, C .
DESALINATION, 2002, 146 (1-3) :23-28
[4]   Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries [J].
Chang, Wonyoung ;
Choi, Jung-Woo ;
Im, Jong-Choo ;
Lee, Joong Kee .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :320-326
[5]   Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery [J].
Cho, Tae-Hyung ;
Tanaka, Masanao ;
Onishi, Hiroshi ;
Kondo, Yuka ;
Nakamura, Tatsuo ;
Yamazaki, Hiroaki ;
Tanase, Shigeo ;
Sakai, Tetsuo .
JOURNAL OF POWER SOURCES, 2008, 181 (01) :155-160
[6]   Composite nonwoven separator for lithium-ion battery: Development and characterization [J].
Cho, Tae-Hyung ;
Tanaka, Masanao ;
Ohnishi, Hiroshi ;
Kondo, Yuka ;
Yoshikazu, Miyata ;
Nakamura, Tatsuo ;
Sakai, Tetsuo .
JOURNAL OF POWER SOURCES, 2010, 195 (13) :4272-4277
[7]   Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators [J].
Choi, Ji-Ae ;
Kim, Sa Heum ;
Kim, Dong-Won .
JOURNAL OF POWER SOURCES, 2010, 195 (18) :6192-6196
[8]   Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries [J].
Jeong, Hyun-Seok ;
Kim, Dong-Won ;
Jeong, Yeon Uk ;
Lee, Sang-Young .
JOURNAL OF POWER SOURCES, 2010, 195 (18) :6116-6121
[9]   Freely suspended nanocomposite membranes as highly sensitive sensors [J].
Jiang, CY ;
Markutsya, S ;
Pikus, Y ;
Tsukruk, VV .
NATURE MATERIALS, 2004, 3 (10) :721-728
[10]   Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes [J].
Jung, Hong-Ryun ;
Ju, Dong-Hyuk ;
Lee, Wan-Jin ;
Zhang, Xiangwu ;
Kotek, Richard .
ELECTROCHIMICA ACTA, 2009, 54 (13) :3630-3637