The construction of r-regular wavelets for arbitrary dilations

被引:20
作者
Bownik, M [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
wavelet; multiresolution analysis; r-regular function; Strang-Fix condition;
D O I
10.1007/BF02511222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a dilation matrix A and a natural number r we construct an associated r-regular multiresolution analysis with r-regular wavelet basis. Here a dilation is an n x n expansive matrix A (all eigenvalues lambda of A satisfy \ lambda \ > 1) with integer entries. This extends a theorem of Strichartz which assumes the existence of a self-affine tiling associated with the dilation A. We also prove that regular wavelets have vanishing moments.
引用
收藏
页码:489 / 506
页数:18
相关论文
共 34 条
[1]  
[Anonymous], 1996, 1 COURSE WAVELETS, DOI DOI 10.1201/9781420049985
[2]   SOLUTION OF 2 PROBLEMS ON WAVELETS [J].
AUSCHER, P .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (02) :181-236
[3]  
AUSCHER P, 1992, CR ACAD SCI I-MATH, V315, P1227
[4]  
Ayache A, 1999, REV MAT IBEROAM, V15, P37
[5]   PHASE-SPACE LOCALIZATION THEOREM FOR ONDELETTES [J].
BATTLE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2195-2196
[6]   Arbitrarily smooth orthogonal nonseparable wavelets in R2 [J].
Belogay, E ;
Wang, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (03) :678-697
[7]   A characterization of dimension functions of wavelets [J].
Bownik, M ;
Rzeszotnik, Z ;
Speegle, D .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (01) :71-92
[8]   The structure of shift-invariant subspaces of L2(Rn) [J].
Bownik, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :282-309
[9]   Tight frames of multidimensional wavelets [J].
Bownik, M .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) :525-542
[10]  
BOWNIK M, MEYER TYPE WAVELET B