Surface characteristics and fibroblast adhesion behavior off RGD-immobilized biodegradable PLLA films

被引:30
作者
Jung, HJ
Ahn, KD
Han, DK
Ahn, DJ
机构
[1] Korea Adv Inst Sci & Technol, Biomat Res Ctr, Seoul 130650, South Korea
[2] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea
关键词
tissue engineering; PLLA film; plasma treatment; direct AA grafting; RGD immobilization; fibroblast adhesion;
D O I
10.1007/BF03218479
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(L-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment and in situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GR (DG) under bar, control) and GRGD as a ligand peptide to get PLLA-g-GR (DG) under bar and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138-145 pmol/cm(2). The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control < PLLA-g-PAA=PLLA-g-GR (DG) under bar < PLLA-g-GRGD, indicating that PLLA-g-GRGD has the highest cell adhesive property.
引用
收藏
页码:446 / 452
页数:7
相关论文
共 40 条
[1]   Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microspheres [J].
Aksoy, S ;
Tumturk, H ;
Hasirci, N .
JOURNAL OF BIOTECHNOLOGY, 1998, 60 (1-2) :37-46
[2]  
Alberts B., 1994, MOL BIOL CELL, P971
[3]   SYNTHESIS AND RGD PEPTIDE MODIFICATION OF A NEW BIODEGRADABLE COPOLYMER - POLY(LACTIC ACID-CO-LYSINE) [J].
BARRERA, DA ;
ZYLSTRA, E ;
LANSBURY, PT ;
LANGER, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (23) :11010-11011
[4]   COPOLYMERIZATION AND DEGRADATION OF POLY(LACTIC ACID CO-LYSINE) [J].
BARRERA, DA ;
ZYLSTRA, E ;
LANSBURY, PT ;
LANGER, R .
MACROMOLECULES, 1995, 28 (02) :425-432
[5]   Acrylic acid grafting and collagen immobilization on poly(ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells [J].
Bisson, I ;
Kosinski, M ;
Ruault, S ;
Gupta, B ;
Hilborn, J ;
Wurm, F ;
Frey, P .
BIOMATERIALS, 2002, 23 (15) :3149-3158
[6]  
Chen GP, 2002, MACROMOL BIOSCI, V2, P67, DOI 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO
[7]  
2-F
[8]   Efficacy of glow discharge gas plasma treatment as a surface modification process for three-dimensional poly (D,L-lactide) scaffolds [J].
Chim, H ;
Ong, JL ;
Schantz, JT ;
Hutmacher, DW ;
Agrawal, CM .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 65A (03) :327-335
[9]   Plasma- and chemical-induced graft polymerization on the surface of starch-based biomaterials aimed at improving cell adhesion and proliferation [J].
Elvira, C ;
Yi, F ;
Azevedo, MC ;
Rebouta, L ;
Cunha, AM ;
San Ramon, J ;
Reis, RL .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2003, 14 (02) :187-194
[10]  
Gao JM, 1998, J BIOMED MATER RES, V42, P417, DOI 10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.3.CO