Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe

被引:272
作者
Hyvonen, Riitta [1 ]
Persson, Tryggve [1 ]
Andersson, Stefan [2 ]
Olsson, Bengt [1 ]
Agren, Goran I. [1 ]
Linder, Sune [3 ]
机构
[1] Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden
[2] Swedish Univ Agr Sci, Dept Soil Sci, S-75007 Uppsala, Sweden
[3] Swedish Univ Agr Sci, So Swedish Forest Res Ctr, S-23053 Alnarp, Sweden
关键词
N-use efficiency; C sequestration; C/N ratio; C stock in trees and soil;
D O I
10.1007/s10533-007-9121-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The aim of this study was to quantify the effects of fertiliser N on C stocks in trees (stems, stumps, branches, needles, and coarse roots) and soils (organic layer +0-10 cm mineral soil) by analysing data from 15 long-term (14-30 years) experiments in Picea abies and Pinus sylvestris stands in Sweden and Finland. Low application rates (30-50 kg N ha(-1) year(-1)) were always more efficient per unit of N than high application rates (50-200 kg N ha(-1) year(-1)). Addition of a cumulative amount of N of 600-1800 kg N ha(-1) resulted in a mean increase in tree and soil C stock of 25 and 11 kg (C sequestered) kg(-1) (N added) ("N-use efficiency"), respectively. The corresponding estimates for NPK addition were 38 and 11 kg (C) kg(-1) (N). N-use efficiency for C sequestration in trees strongly depended on soil N status and increased from close to zero at C/N 25 in the humus layer up to 40 kg (C) kg(-1) (N) at C/N 35 and decreased again to about 20 kg (C) kg(-1) (N) at C/N 50 when N only was added. In contrast, addition of NPK resulted in high (40-50 kg (C) kg(-1) (N)) N-use efficiency also at N-rich (C/N 25) sites. The great difference in N-use efficiency between addition of NPK and N at N-rich sites reflects a limitation of P and K for tree growth at these sites. N-use efficiency for soil organic carbon (SOC) sequestration was, on average, 3-4 times lower than for tree C sequestration. However, SOC sequestration was about twice as high at P. abies as at P. sylvestris sites and averaged 13 and 7 kg (C) kg(-1) (N), respectively. The strong relation between N-use efficiency and humus C/N ratio was used to evaluate the impact of N deposition on C sequestration. The data imply that the 10 kg N ha(-1) year(-1) higher deposition in southern Sweden than in northern Sweden for a whole century should have resulted in 2.0 +/- 1.0 (95% confidence interval) kg m(-2) more tree C and 1.3 +/- 0.5 kg m(-2) more SOC at P. abies sites in the south than in the north for a 100-year period. These estimates are consistent with differences between south and north in tree C and SOC found by other studies, and 70-80% of the difference in SOC can be explained by different N deposition.
引用
收藏
页码:121 / 137
页数:17
相关论文
共 45 条
[1]   Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited [J].
Aber, J ;
McDowell, W ;
Nadelhoffer, K ;
Magill, A ;
Berntson, G ;
Kamakea, M ;
McNulty, S ;
Currie, W ;
Rustad, L ;
Fernandez, I .
BIOSCIENCE, 1998, 48 (11) :921-934
[2]   NITROGEN SATURATION IN NORTHERN FOREST ECOSYSTEMS [J].
ABER, JD ;
NADELHOFFER, KJ ;
STEUDLER, P ;
MELILLO, JM .
BIOSCIENCE, 1989, 39 (06) :378-386
[3]  
Ågren GI, 2007, BIOGEOCHEMISTRY, V82, P217, DOI [10.1007/s10533-006-9064-0, 10.1007/s10533-007-9151-x]
[4]  
Andersson F., 1998, TEMANORD, V566
[5]  
[Anonymous], [No title captured]
[6]  
Berg Bjorn, 1997, Environmental Reviews, V5, P1, DOI 10.1139/er-5-1-1
[7]   The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden [J].
Bergh, J ;
Linder, S ;
Lundmark, T ;
Elfving, B .
FOREST ECOLOGY AND MANAGEMENT, 1999, 119 (1-3) :51-62
[8]   The impact of nitrogen deposition on carbon sequestration in European forests and forest soils [J].
De Vries, Wim ;
Reinds, Gert Jan ;
Gundersen, Per ;
Sterba, Hubert .
GLOBAL CHANGE BIOLOGY, 2006, 12 (07) :1151-1173
[9]  
FAO-Unesco, 1990, Soil map of the world
[10]   THE EFFECT OF ADDED NITROGEN ON THE RATE OF DECOMPOSITION OF ORGANIC-MATTER [J].
FOG, K .
BIOLOGICAL REVIEWS, 1988, 63 (03) :433-462