The new generation of GABA enhancers - Potential in the treatment of epilepsy

被引:182
作者
Czuczwar, SJ
Patsalos, PN
机构
[1] Univ London, Pharmacol & Therapeut Unit, Dept Clin Neurol,Inst Neurol, Natl Hosp Neurol & Neurosurg, London WC1N 3BG, England
[2] Med Univ, Dept Pathophysiol, Lublin, Poland
[3] Inst Agr Med, Isotope Lab, Lublin, Poland
[4] Chalfont Ctr Epilepsy, Chalfont St Peter, England
关键词
D O I
10.2165/00023210-200115050-00001
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
gamma -Aminobutyric acid (GABA) is considered to be the major inhibitory neuro-transmitter in the brain and loss of GABA inhibition has been clearly implicated in epileptogenesis. GABA interacts with 3 types of receptor: GABA(A), CABA(B) and GABA(C). The GABA(A) receptor has provided an excellent target for the development of drugs with an anticonvulsant action. Some clinically useful anticonvulsants, such as the benzodiazepines and barbiturates and possibly valproic acid (sodium valproate), act at this receptor. In recent years 4 new anticonvulsants, namely vigabatrin, tiagabine, gabapentin and topiramate, with a mechanism of action considered to be primarily via an effect on GABA, have been licensed. Vigabatrin elevates brain GABA levels by inhibiting the enzyme GABA transaminase which is responsible for intracellular GABA catabolism. In contrast, tiagabine elevates synaptic GABA levels by inhibiting the GABA uptake transporter, GAT1, and preventing the uptake of GABA into neurons and glia. Gabapentin, a cyclic analogue of GABA, acts by enhancing GABA synthesis and also by decreasing neuronal calcium influx via a specific subunit of voltage-dependent calcium channels. Topiramate acts, in part, via an action on a novel site of the GABA(A) receptor. Although these drugs are useful in some patients, overall, they have proven to be disappointing as they have had little impact on the prognosis of patients with intractable epilepsy. Despite this, additional GABA enhancing anticonvulsants are presently under development. Ganaxolone, retigabine and pregabalin may prove to have a more advantageous therapeutic profile than the presently licensed GABA enhancing drugs. This anticipation is based on 2 characteristics. First, they act by hitherto unique mechanisms of action in enhancing GABA-induced neuronal inhibition. Secondly, they act on additional antiepileptogenic mechanisms. Finally, CGP 36742, a GABA(B) receptor antagonist, may prove to be particularly useful in the management of primary generalised absence seizures. The exact impact of these new GABA-enhancing drugs in the treatment of epilepsy will have to await their licensing and a period of postmarketing surveillance. As to clarification of their role in the management of epilepsy, this will have to await further clinical trials, particularly direct comparative trials with other anticonvulsants.
引用
收藏
页码:339 / 350
页数:12
相关论文
共 77 条
[1]   Tiagabine - A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the management of epilepsy [J].
Adkins, JC ;
Noble, S .
DRUGS, 1998, 55 (03) :437-460
[2]  
Antkiewicz-Michaluk Lucyna, 1995, Polish Journal of Pharmacology, V47, P253
[3]  
Ben-Menachem E, 1999, REV CONTEMP PHARMACO, V10, P163
[4]   THE SPECIFIC PROTECTIVE EFFECT OF DIAZEPAM AND VALPROATE AGAINST ISONIAZID-INDUCED SEIZURES IS NOT CORRELATED WITH INCREASED GABA-LEVELS [J].
BERNASCONI, R ;
KLEIN, M ;
MARTIN, P ;
PORTET, C ;
MAITRE, L ;
JONES, RSG ;
BALTZER, V ;
SCHMUTZ, M .
JOURNAL OF NEURAL TRANSMISSION, 1985, 63 (02) :169-189
[5]  
Beydoun A, 1999, EPILEPSIA, V40, P108
[6]   Progress report on new antiepileptic drugs: a summary of the fourth Eilat conference (EILAT IV) [J].
Bialer, M ;
Johannessen, SI ;
Kupferberg, HJ ;
Levy, RH ;
Loiseau, P ;
Perucca, E .
EPILEPSY RESEARCH, 1999, 34 (01) :1-41
[7]   Progress report on new antiepileptic drugs: a summary of the Fifth Eilat Conference (EILAT V) [J].
Bialer, M ;
Johannessen, SI ;
Kupferberg, HJ ;
Levy, RH ;
Loiseau, P ;
Perucca, E .
EPILEPSY RESEARCH, 2001, 43 (01) :11-58
[8]  
Carter RB, 1997, J PHARMACOL EXP THER, V280, P1284
[9]   MECHANISM OF ANTI-CONVULSANT ACTION OF VALPROATE [J].
CHAPMAN, A ;
KEANE, PE ;
MELDRUM, BS ;
SIMIAND, J ;
VERNIERES, JC .
PROGRESS IN NEUROBIOLOGY, 1982, 19 (04) :315-359
[10]  
CZUCZWAR SJ, 1981, POL J PHARMACOL PHAR, V33, P25