Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST

被引:244
作者
Fraley, C [1 ]
Raftery, AE [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
clustering software; model-based clustering; mixture models; cluster analysis; discriminant analysis; density estimation; supervised classification; unsupervised classification;
D O I
10.1007/s00357-003-0015-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
MCLUST is a software package for model-based clustering, density estimation and discriminant analysis interfaced to the S-PLUS commercial software and the R language. It implements parameterized Gaussian hierarchical clustering algorithms and the EM algorithm for parameterized Gaussian mixture models with the possible addition of a Poisson noise term. Also included are functions that combine hierarchical clustering, EM and the Bayesian Information Criterion (BIC) in comprehensive strategies for clustering, density estimation, and discriminant analysis. MCLUST provides functionality for displaying and visualizing clustering and classification results. A web page with related links can be found at http://www.stat.washington.edu/mclust.
引用
收藏
页码:263 / 286
页数:24
相关论文
共 30 条
[1]   Nonparametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation [J].
Allard, D ;
Fraley, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1485-1493
[2]  
[Anonymous], 2000, WILEY SERIES PROBABI
[3]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[4]   Inference in model-based cluster analysis [J].
Bensmail, H ;
Celeux, G ;
Raftery, AE ;
Robert, CP .
STATISTICS AND COMPUTING, 1997, 7 (01) :1-10
[5]   Regularized Gaussian discriminant analysis through eigenvalue decomposition [J].
Bensmail, H ;
Celeux, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1743-1748
[6]  
Bensmail H, 2003, J CLASSIF, V20, P49, DOI 10.1007/s00357-003-00-05-5
[7]   Nearest-neighbor clutter removal for estimating features in spatial point processes [J].
Byers, S ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) :577-584
[8]   Linear flaw detection in woven textiles using model-based clustering [J].
Campbell, JG ;
Fraley, C ;
Murtagh, F ;
Raftery, AE .
PATTERN RECOGNITION LETTERS, 1997, 18 (14) :1539-1548
[9]  
Campbell JG, 1999, INT J IMAG SYST TECH, V10, P339, DOI 10.1002/(SICI)1098-1098(1999)10:4<339::AID-IMA5>3.0.CO
[10]  
2-3