DNA fine structure and dynamics in crystals and in solution: The impact of BI/BII backbone conformations

被引:75
作者
Djuranovic, D [1 ]
Hartmann, B [1 ]
机构
[1] Inst Biol Physicochim, Lab Biochim Theor, CNRS, UPR 9080, F-75005 Paris, France
关键词
nucleic acid conformation; backbone conformation; BI and BII phosphate groups; specific recognition; molecular dynamics simulation;
D O I
10.1002/bip.10528
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sugar-phosphate backbone conformations are an important structural element for a complete understanding of specific recognition in nucleic acid-protein interactions. They can be involved both in early stages of target discrimination and in structural adaptation upon binding. In the first part of this study, we have analyzed high-resolution structures of double-stranded B-DNA either isolated or bound to proteins, and explored the impact of both the standard BI and the unusual BII phosphate backbone conformations on neighboring sugar puckers and on selected helical parameters. Correlations are found to be similar for free and bound DNA, and in both categories, the possible facing backbone conformations (BI.BI, BI.BII, and BII.BII) define well-characterized substates in the B-DNA conformational space. Notably, BII.BII steps are characterized by specific, and sequence-independent, structural effects involving reduced standard deviations for almost all conformational parameters. In the second part of this work, we analyze four 10 ns molecular dynamics simulations in explicit solvent on the DNA targets of NF-kappaB and bovine papillomavirus E2 proteins, highlighting the multiplicity of backbone dynamical behavior. These results show sequence effects on the percentages of BI and BII conformers, the preferential state of facing backbones, the occurrence of coupled transitions. The backbone states can consequently be seen as a mechanism for transmitting information from the bases to the phosphate groups and thus for modulating the overall structural properties of the target DNA. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:356 / 368
页数:13
相关论文
共 53 条
[1]   Structural effects of cytosine methylation on DNA sugar pucker studied by FTIR [J].
Banyay, M ;
Gräslund, A .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 324 (04) :667-676
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]  
Berman HM, 1997, BIOPOLYMERS, V44, P23, DOI 10.1002/(SICI)1097-0282(1997)44:1<23::AID-BIP3>3.0.CO
[4]  
2-1
[5]   THE NUCLEIC-ACID DATABASE - A COMPREHENSIVE RELATIONAL DATABASE OF 3-DIMENSIONAL STRUCTURES OF NUCLEIC-ACIDS [J].
BERMAN, HM ;
OLSON, WK ;
BEVERIDGE, DL ;
WESTBROOK, J ;
GELBIN, A ;
DEMENY, T ;
HSIEH, SH ;
SRINIVASAN, AR ;
SCHNEIDER, B .
BIOPHYSICAL JOURNAL, 1992, 63 (03) :751-759
[6]   Flexibility of the B-DNA backbone: effects of local and neighbouring sequences on pyrimidine-purine steps [J].
Bertrand, HO ;
Ha-Duong, T ;
Fermandjian, S ;
Hartmann, B .
NUCLEIC ACIDS RESEARCH, 1998, 26 (05) :1261-1267
[7]  
CASE A, 1999, AMBER, V6
[8]   A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat [J].
Cheatham, TE ;
Cieplak, P ;
Kollman, PA .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1999, 16 (04) :845-862
[9]   MOLECULAR-DYNAMICS SIMULATIONS ON SOLVATED BIOMOLECULAR SYSTEMS - THE PARTICLE MESH EWALD METHOD LEADS TO STABLE TRAJECTORIES OF DNA, RNA, AND PROTEINS [J].
CHEATHAM, TE ;
MILLER, JL ;
FOX, T ;
DARDEN, TA ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (14) :4193-4194
[10]   Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA [J].
Chen, FE ;
Huang, DB ;
Chen, YQ ;
Ghosh, G .
NATURE, 1998, 391 (6665) :410-413