Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries

被引:108
作者
Deng, C. [1 ,2 ]
Zhang, S. [3 ]
Yang, S. Y. [3 ]
Gao, Y. [1 ,2 ]
Wu, B. [1 ,2 ]
Ma, L. [1 ,2 ]
Fu, B. L. [3 ]
Wu, Q. [3 ]
Liu, F. L. [3 ]
机构
[1] Coll Heilongjiang Prov, Key Lab Design & Synth Funct Mat & Green Catalysi, Harbin, Peoples R China
[2] Harbin Normal Univ, Coll Chem & Chem Engn, Harbin 150025, Heilongjiang, Peoples R China
[3] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
DOPED LI3V2(PO4)(3); PHOSPHO-OLIVINES;
D O I
10.1021/jp201686g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ti and Mg codoped Li3V2-2xTixMgx(PO4)(3) (x = 0, 0.05, 0.10, 0.20, and 0.25) samples were prepared by a sol-gel method. The effects of Ti and Mg codoping on the physical and electrochemical characteristics of Li3V2(PO4)(3) were investigated. Compared with the XRD pattern of the undoped sample, those of the Ti and Mg codoped samples have no extra reflections, which indicates that Ti and Mg enter the structure of Li3V2(PO4)(3). According to the results of charge-discharge measurements, the initial capacity of Li3V2-2xTixMgx(PO4)(3) at a low current density (0.2 C) decreases with increasing x. However, the discharge capacities at higher current densities (1 and 2 C) and the cycling stability are improved by a low amount of Ti and Mg codoping (x = 0.05), and moreover, EIS measurements indicate the lower charge transfer resistance of Li3V1.9Ti0.05Mg0.05(PO4)(3). The improved electrochemical performance of Li3V1.9Ti0.05Mg0.05(PO4)(3) can be attributed to its higher structural stability and smaller particle size. When xis higher than 0.05, the charge transfer resistance increases with increasing x, which leads to their poor electrochemical performance.
引用
收藏
页码:15048 / 15056
页数:9
相关论文
共 22 条
[1]  
AI D, 2011, ELECTROCHIM ACTA
[2]   The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3 [J].
Barker, J. ;
Gover, R. K. B. ;
Burns, P. ;
Bryan, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (04) :A307-A313
[3]   A carbothermal reduction method for the preparation of electroactive materials for lithium ion applications [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A684-A688
[4]   Hydrothermal synthesis of carbon-coated lithium vanadium phosphate [J].
Chang, Caixian ;
Xiang, Jiangfeng ;
Shi, Xixi ;
Han, Xiaoyan ;
Yuan, Liangjie ;
Sun, Jutang .
ELECTROCHIMICA ACTA, 2008, 54 (02) :623-627
[5]   Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries [J].
Chen, Yinghua ;
Zhao, Yanming ;
An, Xiaoning ;
Liu, Jianmin ;
Dong, Youzhong ;
Chen, Ling .
ELECTROCHIMICA ACTA, 2009, 54 (24) :5844-5850
[6]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[7]   Synthesis and performance of Li3(V1-xMgx)2(PO4)3 cathode materials [J].
Dai, Changsong ;
Chen, Zhenyu ;
Jin, Haizu ;
Hu, Xinguo .
JOURNAL OF POWER SOURCES, 2010, 195 (17) :5775-5779
[8]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[9]   The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J].
Delacourt, C ;
Poizot, P ;
Tarascon, JM ;
Masquelier, C .
NATURE MATERIALS, 2005, 4 (03) :254-260
[10]   Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M = Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries [J].
Deng, C. ;
Zhang, S. ;
Yang, S. Y. ;
Fu, B. L. ;
Ma, L. .
JOURNAL OF POWER SOURCES, 2011, 196 (01) :386-392