Calcium dysregulation in Alzheimer's disease

被引:169
作者
Bojarski, Lukasz [1 ]
Herms, Jochen [2 ]
Kuznicki, Jacek [1 ,3 ]
机构
[1] Int Inst Mol & Cell Biol, PL-02109 Warsaw, Poland
[2] Univ Munich, Ctr Neuropathol & Prion Res, D-81377 Munich, Germany
[3] M Nencki Inst Expt Biol, PL-02093 Warsaw, Poland
关键词
Alzheimer disease; beta-amyloid; calcium signaling; presenilins;
D O I
10.1016/j.neuint.2007.10.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer disease (AD) is the most common form of adult dementia. Its pathological hallmarks are synaptic degeneration, deposition of amyloid plaques and neurofibrillary tangles, leading to neuronal loss. A few hypotheses have been proposed to explain AD pathogenesis. The beta-amyloid (A beta) and hyperphosphorylated tau hypotheses suggest that these proteins are the main players in AD development. Another hypothesis proposes that the dysregulation of calcium homeostasis may be a key factor in accelerating other pathological changes. Although A beta and tau have been extensively studied, recently published data provide a growing body of evidence supporting the critical role of calcium signalling in AD. For example, presenilins, which are mutated in familial cases of AD, were demonstrated to form low conductance calcium channels in the ER and elevated cytosolic calcium concentration increases amyloid generation. Moreover, memantine, an antagonist of the NMDA-calcium channel receptor, has been found to have a beneficial effect for AD patients offering novel possibilities for a calcium signalling targeted therapy of AD. This review underscores the growing importance of calcium ions in AD development and focuses on the relevant aspects of calcium homeostasis. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:621 / 633
页数:13
相关论文
共 150 条
[1]   Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein [J].
Andersen, OM ;
Reiche, J ;
Schmidt, V ;
Gotthardt, M ;
Spoelgen, R ;
Behlke, J ;
von Arnim, CAF ;
Breiderhoff, T ;
Jansen, P ;
Wu, X ;
Bales, KR ;
Cappai, R ;
Masters, CL ;
Gliemann, J ;
Mufson, EJ ;
Hyman, BT ;
Paul, SM ;
Nykjær, A ;
Willnow, TE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (38) :13461-13466
[2]   Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins [J].
Annaert, WG ;
Esselens, C ;
Baert, V ;
Boeve, C ;
Snellings, G ;
Cupers, P ;
Craessaerts, K ;
De Strooper, B .
NEURON, 2001, 32 (04) :579-589
[3]   GIANT MULTILEVEL CATION CHANNELS FORMED BY ALZHEIMER-DISEASE AMYLOID BETA-PROTEIN [A-BETA-P-(1-40)] IN BILAYER-MEMBRANES [J].
ARISPE, N ;
POLLARD, HB ;
ROJAS, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) :10573-10577
[4]   Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions [J].
Arnaudeau, S ;
Kelley, WL ;
Walsh, JV ;
Demaurex, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29430-29439
[5]   Functional phonotype in transgenic mice expressing mutant human presenilin-1 [J].
Barrow, PA ;
Empson, RM ;
Gladwell, SJ ;
Anderson, CM ;
Killick, R ;
Yu, X ;
Jefferys, JGR ;
Duff, K .
NEUROBIOLOGY OF DISEASE, 2000, 7 (02) :119-126
[6]   Platelet APP isoform ratios in asymptomatic young adults expressing an AD-related presenilin-1 mutation [J].
Baskin, F ;
Rosenberg, RN ;
Iyer, L ;
Schellenberg, GD ;
Hynan, L ;
Nee, LE .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2001, 183 (01) :85-88
[7]   Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice [J].
Begley, JG ;
Duan, WZ ;
Chan, S ;
Duff, K ;
Mattson, MP .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (03) :1030-1039
[8]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[9]   Ca2+-independent binding and cellular expression profiles question a significant role of calmyrin in transduction of Ca2+-signals to Alzheimer's disease-related presenilin 2 in forebrain [J].
Blazejczyk, M ;
Wojda, U ;
Sobczak, A ;
Spilker, C ;
Bernstein, HG ;
Gundelfinger, ED ;
Kreutz, MR ;
Kuznicki, J .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2006, 1762 (01) :66-72
[10]   Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function [J].
Braunewell, KH ;
Gundelfinger, ED .
CELL AND TISSUE RESEARCH, 1999, 295 (01) :1-12