A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows

被引:117
作者
Bouchut, F
Mangeney-Castelnau, A
Perthame, B
Vilotte, JP
机构
[1] CNRS, Dept Math & Applicat, F-75230 Paris 05, France
[2] Ecole Normale Super, F-75230 Paris, France
[3] INRIA Rocquencourt, Projet M3N, F-78153 Le Chesnay, France
[4] IPGP, Dept Modelisat Phys & Numer, F-75232 Paris 05, France
关键词
D O I
10.1016/S1631-073X(03)00117-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new model for shallow water flows with non-flat bottom. A prototype is the Saint Venant equation for rivers and coastal areas, which is valid for small slopes. An improved model, due to Savage-Hutter, is valid for small slope variations. We introduce a new model which relaxes all restrictions on the topography. Moreover it satisfies the properties (i) to provide an energy dissipation inequality, (ii) to be an exact hydrostatic solution of Euler equations. The difficulty we overcome here is the normal dependence of the velocity field, that we are able to establish exactly. Applications we have in mind concern, in particular, computational aspects of flows of granular material (for example in debris avalanches) where such models are especially relevant. (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:531 / 536
页数:6
相关论文
共 14 条
  • [1] BOUCHUT F, 2002, INTRO FINITE VOLUME
  • [2] BRESCH D, VISCOUS SHALLOW WATE
  • [3] On granular surface flow equations
    Douady, S
    Andreotti, B
    Daerr, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1999, 11 (01) : 131 - 142
  • [4] GERBEAU JF, 2001, DCDS, V1
  • [5] GHIL M, 2000, NONLINEAR CLIMATE TH
  • [6] Gravity-driven free surface flow of granular avalanches over complex basal topography
    Gray, JMNT
    Wieland, M
    Hutter, K
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1985): : 1841 - 1874
  • [7] Gwiazda P, 2002, ASYMPTOTIC ANAL, V30, P43
  • [8] HILD P, IN PRESS MATH MODELL
  • [9] Lions P.L, 1996, Mathematical Topics in Fluid Mechanics, Vol. I: Incompressible Models, VI
  • [10] Lions PL, 1996, COMMUN PUR APPL MATH, V49, P599, DOI 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO