Rank estimators for monotonic index models

被引:100
作者
Cavanagh, C
Sherman, RP [1 ]
机构
[1] CALTECH, Div Humanities & Social Sci, Pasadena, CA 91125 USA
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
关键词
rank estimators; semiparametric monotonic linear index models; computational efficiency; U-processes; models with multiple indices; categorical explanatory variables;
D O I
10.1016/S0304-4076(97)00090-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
We present a new class of rank estimators of scaled coefficients in semiparametric monotonic linear index models. The estimators require no subjective bandwidth choices and have attractive computational properties. We establish root n-consistency and asymptotic normality, and provide the general form and consistent estimators of the asymptotic covariance matrix. We also provide a generalization covering single equation multiple-indices models satisfying certain monotonicity constraints. An analogue of consistency when all explanatory variables are categorical is established, and an application is presented. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:351 / 381
页数:31
相关论文
共 17 条