Interpreting face images using Active Appearance Models
被引:257
作者:
Edwards, GJ
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Med Biophys, Wolfson Image Anal Unit, Manchester M13 9PT, Lancs, EnglandUniv Manchester, Dept Med Biophys, Wolfson Image Anal Unit, Manchester M13 9PT, Lancs, England
Edwards, GJ
[1
]
Taylor, CJ
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Med Biophys, Wolfson Image Anal Unit, Manchester M13 9PT, Lancs, EnglandUniv Manchester, Dept Med Biophys, Wolfson Image Anal Unit, Manchester M13 9PT, Lancs, England
Taylor, CJ
[1
]
Cootes, TF
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Med Biophys, Wolfson Image Anal Unit, Manchester M13 9PT, Lancs, EnglandUniv Manchester, Dept Med Biophys, Wolfson Image Anal Unit, Manchester M13 9PT, Lancs, England
Cootes, TF
[1
]
机构:
[1] Univ Manchester, Dept Med Biophys, Wolfson Image Anal Unit, Manchester M13 9PT, Lancs, England
来源:
AUTOMATIC FACE AND GESTURE RECOGNITION - THIRD IEEE INTERNATIONAL CONFERENCE PROCEEDINGS
|
1998年
关键词:
D O I:
10.1109/AFGR.1998.670965
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We demonstrate a fast, robust method of interpreting face images using an Active Appearance Model (AAM). An AAM contains a statistical model of shape and grey-level appearance which can generalise to almost any face. Matching to an image involves finding model parameters which minimise the difference between the image and a synthesised face. We observe that displacing each model parameter from the correct value induces a particular pattern in the residuals. In a training phase, the AA learns a linear model of the correlation between parameter displacements and the induced residuals. During search it measures the residuals and uses this model to correct the current parameters, leading to a better fit. A good overall match is obtained in a few iterations, even from poor starting estimates. We describe the technique in detail and show it matching to new face images.