Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres

被引:46
作者
Irvine, DV
Amor, DJ
Perry, J
Sirvent, N
Pedeutour, F
Choo, KHA
Saffery, R
机构
[1] Royal Childrens Hosp, Murdoch Childrens Res Inst, Parkville, Vic 3052, Australia
[2] Hop Archet, Genet Lab, F-06202 Nice 3, France
[3] Univ Melbourne, Dept Paediat, Parkville, Vic 3052, Australia
关键词
CENP-A; kinetochore; neocentromere;
D O I
10.1007/s10577-005-5377-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have expressed an EGFP-CENP-A fusion protein in human cells in order to quantitate the level of CENP-A incorporated into normal and variant human centromeres. The results revealed a 3.2-fold difference in the level of CENP-A incorporation into a-satellite repeat DNA-based centromeres, with the Y centromere showing the lowest level of all normal human chromosomes. Identification of individual chromosomes revealed a statistically significant, though not absolute, correlation between chromosome size and CENP-A incorporation. Analysis of three independent neocentromeres revealed a significantly reduced level of CENP-A compared to normal centromeres. Truncation of a neocentric marker chromosome to produce a minichromosome further reduced CENP-A levels, indicating a remodelling of centromeric chromatin. These results suggest a role for increased CENP-A incorporation in the faithful segregation of larger chromosomes and support a model of centromere evolution in which neocentromeres represent ancestral centromeres that, through adaptive evolution, acquire satellite repeats to facilitate the incorporation of higher numbers of CENP-A containing nucleosomes, thereby facilitating the assembly of larger kinetochore structures.
引用
收藏
页码:805 / 815
页数:11
相关论文
共 47 条
[1]   Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres [J].
Alonso, A ;
Mahmood, R ;
Li, SL ;
Cheung, F ;
Yoda, K ;
Warburton, PE .
HUMAN MOLECULAR GENETICS, 2003, 12 (20) :2711-2721
[2]   Neocentromeres: Role in human disease, evolution, and centromere study [J].
Amor, DJ ;
Choo, KHA .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) :695-714
[3]   CENP-A, -B, and -C chromatin complex that contains the I-type α-satellite array constitutes the prekinetochore in HeLa cells [J].
Ando, S ;
Yang, H ;
Nozaki, N ;
Okazaki, T ;
Yoda, K .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (07) :2229-2241
[4]   Conserved organization of centromeric chromatin in flies and humans [J].
Blower, MD ;
Sullivan, BA ;
Karpen, GH .
DEVELOPMENTAL CELL, 2002, 2 (03) :319-330
[5]   COMPOUND KINETOCHORES OF THE INDIAN MUNTJAC - EVOLUTION BY LINEAR FUSION OF UNIT KINETOCHORES [J].
BRINKLEY, BR ;
VALDIVIA, MM ;
TOUSSON, A ;
BRENNER, SL .
CHROMOSOMA, 1984, 91 (01) :1-11
[6]   SIZE VARIATION IN KINETOCHORES OF HUMAN-CHROMOSOMES [J].
CHERRY, LM ;
JOHNSTON, DA .
HUMAN GENETICS, 1987, 75 (02) :155-158
[7]  
CHERRY LM, 1989, J CELL SCI, V92, P281
[8]   Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns [J].
Craig, JM ;
Earle, E ;
Canham, P ;
Wong, LH ;
Anderson, M ;
Choo, KHA .
HUMAN MOLECULAR GENETICS, 2003, 12 (23) :3109-3121
[9]  
Dytham C., 2003, CHOOSING USING STAT, VSecond
[10]   VISUALIZATION OF CENTROMERE PROTEINS CENP-B AND CENP-C ON A STABLE DICENTRIC CHROMOSOME IN CYTOLOGICAL SPREADS [J].
EARNSHAW, WC ;
RATRIE, H ;
STETTEN, G .
CHROMOSOMA, 1989, 98 (01) :1-12