Phase synchronization on scale-free networks with community structure

被引:65
作者
Zhou, Tao [1 ]
Zhao, Ming
Chen, Guanrong
Yan, Gang
Wang, Bing-Hong
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Ctr Nonlinear Sci, Hefei 230026, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[4] Univ Sci & Technol China, Dept Elect Sci & Technol, Hefei 230026, Peoples R China
[5] Shanghai Acad Syst Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.physleta.2007.04.083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we propose a growing network model that can generate scale-free networks with a tunable community strength. The community strength, C, is directly measured by the ratio of the number of external edges to that of the internal ones; a smaller C corresponds to a stronger community structure. By using the Kuramoto model, we investigated the phase synchronization on this network and found an abnormal region (C <= 0.002), in which the network has even worse synchronizability than the unconnected case (C = 0). On the other hand, the community effect will vanish when C exceeds 0.1. Between these two extreme regions, a stronger community structure will hinder global synchronization. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:431 / 434
页数:4
相关论文
共 40 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
[Anonymous], CHAOS COMPLEXITY LET
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[6]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[7]   Synchronizing weighted complex networks [J].
Chavez, M ;
Hwang, DU ;
Amann, A ;
Boccaletti, S .
CHAOS, 2006, 16 (01)
[8]   Synchronization is enhanced in weighted complex networks [J].
Chavez, M ;
Hwang, DU ;
Amann, A ;
Hentschel, HGE ;
Boccaletti, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[9]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187
[10]   Synchronization of oscillators with random nonlocal connectivity [J].
Gade, PM .
PHYSICAL REVIEW E, 1996, 54 (01) :64-70