Coalescent Simulation of Intracodon Recombination

被引:50
作者
Arenas, Miguel [1 ]
Posada, David [1 ]
机构
[1] Univ Vigo, Dept Bioquim Genet & Inmunol, Vigo 36310, Spain
关键词
APPROXIMATE BAYESIAN COMPUTATION; AMINO-ACID SITES; POSITIVE SELECTION; PHYLOGENETIC ANALYSIS; NATURAL-SELECTION; DNA-SEQUENCES; GENETIC DATA; MODEL; PROGRAM; GENOME;
D O I
10.1534/genetics.109.109736
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The coalescent with recombination is a very useful tool in molecular population genetics. Under this framework, genealogies often represent the evolution of the substitution unit, and because of this, the few coalescent algorithms implemented for the simulation of coding sequences force recombination to occur only between codons. However, it is clear that recombination is expected to occur most often within codons. Here we have developed an algorithm that can evolve coding sequences under an ancestral recombination graph that represents the genealogies at each nucleotide site, thereby allowing for intracodon recombination. The algorithm is a modification of Hudson's coalescent in which, in addition to keeping track of events occurring in the ancestral material that reaches the sample, we need to keep track of events occurring in ancestral material that does not reach the sample but that is produced by intracodon recombination. We are able to show that at typical substitution rates the number of non-synonymous changes induced by intracodon recombination is small and that intracodon recombination does not generally result in inflated estimates of the overall nonsynonymous/synonymous substitution ratio (v). On the other hand, recombination can bias the estimation of v at particular codons, resulting in apparent rate variation among sites and in the spurious identification of positively selected sites. Importantly, in this case, allowing for variable synonymous rates across sites greatly reduces the false-positive rate and recovers statistical power. Finally, coalescent simulations with intracodon recombination could be used to better represent the evolution of nuclear coding genes or fast-evolving pathogens such as HIV-1. We have implemented this algorithm in a computer program called NetRecodon, freely available at http://darwin.uvigo.es.
引用
收藏
页码:429 / U169
页数:14
相关论文
共 58 条
[1]  
Anisimova M, 2003, GENETICS, V164, P1229
[2]  
[Anonymous], 2011, PAUP*: phylogenetic analysis using parsimony
[3]   Recodon: Coalescent simulation of coding DNA sequences with recombination, migration and demography [J].
Arenas, Miguel ;
Posada, David .
BMC BIOINFORMATICS, 2007, 8 (1)
[4]  
Beaumont MA, 2002, GENETICS, V162, P2025
[5]   Natural selection on protein-coding genes in the human genome [J].
Bustamante, CD ;
Fledel-Alon, A ;
Williamson, S ;
Nielsen, R ;
Hubisz, MT ;
Glanowski, S ;
Tanenbaum, DM ;
White, TJ ;
Sninsky, JJ ;
Hernandez, RD ;
Civello, D ;
Adams, MD ;
Cargill, M ;
Clark, AG .
NATURE, 2005, 437 (7062) :1153-1157
[6]   Recombination estimation under complex evolutionary models with the coalescent composite-likelihood method [J].
Carvajal-Rodríguez, A ;
Crandall, KA ;
Posada, D .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (04) :817-827
[7]   Evolution of genes and genomes on the Drosophila phylogeny [J].
Clark, Andrew G. ;
Eisen, Michael B. ;
Smith, Douglas R. ;
Bergman, Casey M. ;
Oliver, Brian ;
Markow, Therese A. ;
Kaufman, Thomas C. ;
Kellis, Manolis ;
Gelbart, William ;
Iyer, Venky N. ;
Pollard, Daniel A. ;
Sackton, Timothy B. ;
Larracuente, Amanda M. ;
Singh, Nadia D. ;
Abad, Jose P. ;
Abt, Dawn N. ;
Adryan, Boris ;
Aguade, Montserrat ;
Akashi, Hiroshi ;
Anderson, Wyatt W. ;
Aquadro, Charles F. ;
Ardell, David H. ;
Arguello, Roman ;
Artieri, Carlo G. ;
Barbash, Daniel A. ;
Barker, Daniel ;
Barsanti, Paolo ;
Batterham, Phil ;
Batzoglou, Serafim ;
Begun, Dave ;
Bhutkar, Arjun ;
Blanco, Enrico ;
Bosak, Stephanie A. ;
Bradley, Robert K. ;
Brand, Adrianne D. ;
Brent, Michael R. ;
Brooks, Angela N. ;
Brown, Randall H. ;
Butlin, Roger K. ;
Caggese, Corrado ;
Calvi, Brian R. ;
de Carvalho, A. Bernardo ;
Caspi, Anat ;
Castrezana, Sergio ;
Celniker, Susan E. ;
Chang, Jean L. ;
Chapple, Charles ;
Chatterji, Sourav ;
Chinwalla, Asif ;
Civetta, Alberto .
NATURE, 2007, 450 (7167) :203-218
[8]   Mapping sites of positive selection and amino acid diversification in the HIV genome: An alternative approach to vaccine design? [J].
de Oliveira, T ;
Salemi, M ;
Gordon, M ;
Vandamme, AM ;
van Rensburg, E ;
Engelbrecht, S ;
Coovadia, HM ;
Cassol, S .
GENETICS, 2004, 167 (03) :1047-1058
[9]  
DeChaine EG, 2006, EVOLUTION, V60, P1004
[10]  
Ewens W., 1979, Mathematical Population Genetics