Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation

被引:18
作者
Barashenkov, IV [1 ]
Cross, S
Malomed, BA
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
[2] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 05期
关键词
D O I
10.1103/PhysRevE.68.056605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is well known that pulselike solutions of the cubic complex Ginzburg-Landau equation are unstable but can be stabilized by the addition of quintic terms. In this paper we explore an alternative mechanism where the role of the stabilizing agent is played by the parametric driver. Our analysis is based on the numerical continuation of solutions in one of the parameters of the Ginzburg-Landau equation (the diffusion coefficient c), starting from the nonlinear Schrodinger limit (for which c=0). The continuation generates, recursively, a sequence of coexisting stable solutions with increasing number of humps. The sequence "converges" to a long pulse which can be interpreted as a bound state of two fronts with opposite polarities.
引用
收藏
页数:10
相关论文
共 53 条
[1]  
Akhmediev N., 2001, SPRINGER SERIES OPTI, V82, P311
[2]  
Akhmediev N., 1997, SOLITONS NONLINEAR P
[3]   Dynamics of the parametrically driven NLS solitons beyond the onset of the oscillatory instability [J].
Alexeeva, NV ;
Barashenkov, IV ;
Pelinovsky, DE .
NONLINEARITY, 1999, 12 (01) :103-140
[4]   Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators [J].
Alexeeva, NV ;
Barashenkov, IV ;
Tsironis, GP .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3053-3056
[5]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[6]   Stable complexes of parametrically driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Zemlyanaya, EV .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2568-2571
[7]   Parametrically driven dark solitons [J].
Barashenkov, IV ;
Woodford, SR ;
Zemlyanaya, EV .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[8]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[9]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[10]   TOPOGRAPHY OF ATTRACTORS OF THE PARAMETRICALLY DRIVEN NONLINEAR SCHRODINGER-EQUATION [J].
BONDILA, M ;
BARASHENKOV, IV ;
BOGDAN, MM .
PHYSICA D, 1995, 87 (1-4) :314-320