Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit

被引:395
作者
Kato, M [1 ]
Ikoma, Y
Matsumoto, H
Sugiura, M
Hyodo, H
Yano, M
机构
[1] Natl Inst Fruit Tree Sci, Dept Citrus Res, Shizuoka 4240292, Japan
[2] Shizuoka Univ, Fac Agr, Dept Sci Biol, Shizuoka 4228529, Japan
关键词
D O I
10.1104/pp.103.031104
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The relationship between carotenoid accumulation and the expression of carotenoid biosynthetic genes during fruit maturation was investigated in three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). We cloned the cDNAs for phytoene synthase (CitPSY), phytoene desaturase (CitPDS), xi-carotene (car) desaturase (CitZDS), carotenoid isomerase (CitCRTISO), lycopene beta-cyclase (CitLCYb), beta-ring hydroxylase (CitHYb), zeaxanthin (zea) epoxidase (CitZEP), and lycopene E-Cyclase (CitLCYe) from Satsuma mandarin, which shared high identities in nucleotide sequences with Valencia orange, Lisbon lemon, and other plant species. With the transition of peel color from green to orange, the change from beta,epsilon-carotenoid (alpha-car and lutein) accumulation to beta,beta-carotenoid (beta-car, beta-cryptoxanthin, zea, and violaxanthin) accumulation was observed in the flavedos of Satsuma mandarin and Valencia orange, accompanying the disappearance of CitLCYe transcripts and the increase in CitLCYb transcripts. Even in green fruit, high levels of beta,epsilon-carotenoids and CitLCYe transcripts were not observed in the juice sacs. As fruit maturation progressed in Satsuma mandarin and Valencia orange, a simultaneous increase in the expression of genes (CitPSY, CitPDS, CitZDS, CitLCYb, CitHYb, and CitZEP) led to massive beta,beta-xanthophyll (beta-cryptoxanthin, zea, and violaxanthin) accumulation in both the flavedo and juice sacs. The gene expression of CitCRTISO was kept low or decreased in the flavedo during massive beta,beta-xanthophyll accumulation. In the flavedo of Lisbon lemon and Satsuma mandarin, massive accumulation of phytoene was observed with a decrease in the transcript level for CitPDS. Thus, the carotenoid accumulation during citrus fruit maturation was highly regulated by the coordination of the expression among carotenoid biosynthetic genes. In this paper, the mechanism leading to diversity in beta,beta-xanthophyll compositions between Satsuma mandarin and Valencia orange was also discussed on the basis of the substrate specificity of beta-ring hydroxylase and the balance of expression between upstream synthesis genes (CitPSY, CitPDS, CitZDS, and CitLCYb) and downstream synthesis genes (CitHYb and CitZEP).
引用
收藏
页码:824 / 837
页数:14
相关论文
共 34 条
[1]   A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation [J].
AlBabili, S ;
VonLintig, J ;
Haubruck, H ;
Beyer, P .
PLANT JOURNAL, 1996, 9 (05) :601-612
[2]   Induction and control of chromoplast-specific carotenoid genes by oxidative stress [J].
Bouvier, F ;
Backhaus, RA ;
Camara, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (46) :30651-30659
[3]   Xanthophyll biosynthesis - Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum) [J].
Bouvier, F ;
dHarlingue, A ;
Hugueney, P ;
Marin, E ;
MarionPoll, A ;
Camara, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (46) :28861-28867
[4]   Regulation of carotenoid formation during tomato fruit ripening and development [J].
Bramley, PM .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (377) :2107-2113
[5]  
Busch M, 2002, PLANT PHYSIOL, V128, P439, DOI 10.1104/pp.010573
[6]   Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation [J].
Cunningham, FX ;
Pogson, B ;
Sun, ZR ;
McDonald, KA ;
DellaPenna, D ;
Gantt, E .
PLANT CELL, 1996, 8 (09) :1613-1626
[7]   Genes and enzymes of carotenoid biosynthesis in plants [J].
Cunningham, FX ;
Gantt, E .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :557-583
[8]  
Davies BH, 1976, CHEMISTRY BIOCHEMIST, P38, DOI DOI 10.1590/S0101-20612001000200017
[9]   CAROTENOID BIOSYNTHESIS DURING TOMATO FRUIT-DEVELOPMENT [J].
FRASER, PD ;
TRUESDALE, MR ;
BIRD, CR ;
SCHUCH, W ;
BRAMLEY, PM .
PLANT PHYSIOLOGY, 1994, 105 (01) :405-413
[10]   REGULATION OF CAROTENOID BIOSYNTHESIS DURING TOMATO DEVELOPMENT [J].
GIULIANO, G ;
BARTLEY, GE ;
SCOLNIK, PA .
PLANT CELL, 1993, 5 (04) :379-387